若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系。

正常及肿瘤干细胞和祖细胞的鉴定、评估和分选

ALDEFLUOR™是一种非免疫的荧光试剂,用于检测80多种组织中表达高活性乙醛脱氢酶(ALDHbr)的细胞,已被超过1000篇文献所引用。据报道,ALDH在各种谱系的正常及肿瘤干细胞和祖细胞中高表达,包括造血细胞、乳腺细胞、内皮细胞、间充质细胞和神经细胞。只有具有完整细胞膜的活细胞才能保留ALDEFLUOR™反应产物,所以本检测体系只鉴定有活性的ALDHbr细胞。ALDEFLUOR™是一种无毒且操作简便的试剂盒,无需抗体染色,并与标准的细胞分选和分析仪器兼容。

ALDEFLUOR™如何检测正常细胞和肿瘤祖细胞

该试剂包含 ALDH 的无毒荧光底物—BODIPY-氨基乙醛(BAAA),可在完整活体细胞中自由扩散。在存在ALDH的情况下,BAAA转化为带负电荷的产物BODIPY-氨基乙酸盐(BAA),并保留在细胞内。BAA在细胞内累积可导致荧光增强,可以用流式细胞仪分析检测高表达的ALDH(ALDHbr)细胞。观看本视频,了解更多有关ALDEFLUOR™工作原理的信息。

查看所有产品>

为何使用 ALDEFLUOR™?

  • 通过ALDH活性检测具活性的正常或肿瘤细胞。无需抗体染色。
  • 可用于多种细胞类型和物种。
  • 仅识别细胞膜完整的活细胞。兼容免疫表型分析。
  • 超过1000篇文献引用。
  • 操作简单,重复性高。与标准细胞分析仪兼容。

ALDEFLUOR™ 产品

ALDEFLUOR™ 试剂盒

推荐应用:

从正常和肿瘤组织中检测干细胞和祖细胞

物种:

人,小鼠,大鼠

ALDHbr 分析试剂盒

推荐应用:

脐带血 ALDHbrCD34+ 造血干细胞和祖细胞的检测

物种:

ALDEFLUOR™ 分析缓冲液

推荐应用:

用免疫荧光标记的抗体对 ALDEFLUOR™ 反应细胞进行复染

物种:

人,小鼠,大鼠

相关 ALDEFLUOR™ 产品:

查看细节
折叠详情

优化 ALDEFLUOR™ 用于各种组织类型

ALDEFLUOR™ 最初开发并优化最初用于检测人血液和骨髓中的造血干/祖细胞。随后,它也被验证可以检测许多其他组织类型(包括乳腺、结肠、肺、胰腺和甲状腺)以及肿瘤细胞系中的正常细胞和恶性细胞。根据您的目标组织类型优化ALDEFLUOR™方案可以显著提高荧光强度,从而优化分析结果。观看本视频,了解我们的科学家如何在乳腺组织中增加ALDHbr细胞的荧光强度,学习如何优化方案以满足您的研究需要。

查看所有产品>

相关资源

Key Applications

Publications on Normal Cells

Hematopoietic Cells

Boxall SA et al. (2008) Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplant 43(8): 627-35.
Capoccia BJ et al. (2009) Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113(21): 5340-51.
Christ O et al. (2007) Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 92(9): 1165-72.
Fallon P et al. (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122: 99-108.
Gentry T et al. (2007) Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood. Cytotherapy 9(6): 569-76.
Gentry T et al. (2007) Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 9(3): 259-74.
Gündüz E et al. (2010) Evaluation of mobilized peripheral stem cells according to CD34 and aldehyde dehydrogenase expression and effect of SSC(lo) ALDH(br) cells on hematopoietic recovery. Cytotherapy 12(8): 1006-12.
Hess DA et al. (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104(6): 1648-55.
Hess DA et al. (2008) Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 26(3): 611-20.
Liu C et al. (2010) Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation. Blood 116(25): 5518-27.
Muramoto GG et al. (2010) Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells 28(3): 523-34.
Pearce DJ & Connet D. (2007) The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Exp Hematol 35(9): 1437-46.
Pierre-Louis O et al. (2009) Dual SP/ALDH functionalities refine the human hematopoietic Lin-CD34+CD38- stem/progenitor cell compartment. Stem Cells 27(10): 2552-62.
Povsic TJ et al. (2009) Aldehyde dehydrogenase activity allows reliable EPC enumeration in stored peripheral blood samples. J Thromb Thrombolysis 28(3): 259-65.
Povsic TJ et al. (2010) Aging is not associated with bone marrow-resident progenitor cell depletion. J Gerontol A Biol Sci Med Sci 65(10): 1042-50.
Sondergaard CS et al. (2010) Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction. J Transl Med 8: 24.
Storms RW et al. (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96: 9118-23.
Shoulars K et al. (2016) Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay. Blood 127(19):2346-54.

Endothelial Cells

Mammary Cells

Ginestier C et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5): 555-67.
Liu S et al. (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105(5): 1680-5.

Mesenchymal Cells

Pancreatic Cells

Prostate Cells

Yao M et al. (2010) Prostate-regenerating capacity of cultured human adult prostate epithelial cells. Cells Tissues Organs 191(3): 203-12.

Publications on Cancer Cells

Cancer Stem Cells: Review Articles

Alison MR et al. (2011) Cancer Stem Cells: Problems for Therapy? J Pathol 223(2): 147-161.
Alison MR et al. (2010) Finding Cancer Stem Cells: Are Aldehyde Dehydrogenases Fit for Purpose? J Pathol 222(4): 335-44.
Ma I & Allan AL. (2011) The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem Cells. Stem Cell Rev & Rep 7(2): 292-306.

Breast Cancer Cells

Alam M et al. (2013) MUC1-C Oncoprotein Activates ERK→C/EBP Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells. J Biol Chem 288(43): 30892-903.
Atkinson RL et al. (2013) Cancer Stem Cell Markers Are Enriched in Normal Tissue Adjacent to Triple Negative Breast Cancer and Inversely Correlated with DNA Repair Deficiency. Breast Cancer Res 15(5): R77.
Azzam DJ et al. (2013) Triple Negative Breast Cancer Initiating Cell Subsets Differ in Functional and Molecular Characteristics and in γ-Secretase Inhibitor Drug Responses. EMBO Mol Med 5(10): 1502-22.
Buckley NE et al. (2013) BRCA1 Is a Key Regulator of Breast Differentiation Through Activation of Notch Signalling with Implications for Anti-Endocrine Treatment of Breast Cancers. Nucl Acids Res 41(18): 8601-14.
Buijs JT et al. (2012) The BMP2/7 Heterodimer Inhibits the Human Breast Cancer Stem Cell Subpopulation and Bone Metastases Formation. Oncogene 31(17): 2164-74.
Chen D et al. (2013) ANTXR1, a Stem Cell-Enriched Functional Biomarker, Connects Collagen Signaling to Cancer Stem-Like Cells and Metastasis in Breast Cancer. Cancer Res 73(18): 5821-33.
Conti L et al. (2013) The Noninflammatory Role of High Mobility Group Box 1/Toll-Like Receptor 2 Axis in the Self-Renewal of Mammary Cancer Stem Cells. FASEB J 27(12): 4731-44.
Ithimakin S et al. (2013) HER2 Drives Luminal Breast Cancer Stem Cells in the Absence of HER2 Amplification: Implications for Efficacy of Adjuvant Trastuzumab. Cancer Res 73(5): 1635-46.
Kundu N et al. (2014) Prostaglandin E Receptor EP4 Is a Therapeutic Target in Breast Cancer Cells with Stem-Like Properties. Breast Cancer Res TR 143(1): 19-31.
Liu S et al. (2008) BRCA1 Regulates Human Mammary Stem/ Progenitor Cell Fate. PNAS 105(5): 1680-85.
Liu P et al. (2013) Disulfiram Targets Cancer Stem-Like Cells and Reverses Resistance and Cross-Resistance in Acquired Paclitaxel-Resistant Triple-Negative Breast Cancer Cells. Brit J Cancer 109(7): 1876-85.
Londoño-Joshi AI et al. (2014) Effect of Niclosamide on Basal-Like Breast Cancers. Mol Cancer Ther 13(4):800-11.
McClements L et al. (2013) Targeting Treatment-Resistant Breast Cancer Stem Cells with FKBPL and its Peptide Derivative, AD-01, Via the CD44 Pathway. Clin Cancer Res 19(14): 3881-93.
Piva M et al. (2014) Sox2 Promotes Tamoxifen Resistance in Breast Cancer Cells. EMBO Mol Med 6(1): 66-79.
Rustighi A et al. (2014) Prolyl-Isomerase Pin1 Controls Normal and Cancer Stem Cells of the Breast. EMBO Mol Med 6(1): 99-119.
Salvador MA et al. (2013) The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression. Clin Cancer Res 19(23): 6520-31.
Vazquez-Martin A et al. (2013) Reprogramming of Non-Genomic Estrogen Signaling by the Stemness Factor SOX2 Enhances the Tumor-Initiating Capacity of Breast Cancer Cells. Cell Cycle 12(22): 3471-77.
Wang X et al. (2013) PPARγ Maintains ERBB2-Positive Breast Cancer Stem Cells. Oncogene 32(49): 5512-21.
Yamamoto M et al. (2013) NF-κB Non-Cell-Autonomously Regulates Cancer Stem Cell Populations in the Basal-Like Breast Cancer Subtype. Nat Commun 4: 2299.
Yu F et al. (2011) Kruppel-Like Factor 4 (KLF4) is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion. Oncogene 30(18): 2161-272.
Zhou Y et al. (2014) The miR-106b25 Cluster Promotes Bypass of Doxorubicin-Induced Senescence and Increase in Motility and Invasion by Targeting the E-Cadherin Transcriptional Activator EP300. Cell Death Differ 21(3): 462-74.

Skin Cancer Cells

Boonyaratanakornkit JB et al. (2010) Selection of Tumorigenic Melanoma Cells Using ALDH. J Invest Dermatol 130(12): 2799– 808.

Thyroid Cancer Cells

Todaro M et al. (2010) Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells. Cancer Res 70(21): 8874-85.
Copyright © 2025 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, Scientists Helping Scientists, AGGREWELL, CELLADHERE, CLONACELL, EASYPLATE, EASYSEP, ENDOCULT, EPICULT, ESCULT, ERYTHROCLEAR, FRESR, GLOCELL, MAMMOCULT, MEGACULT, MESENCULT, METHOCULT, MYELOCULT, NEUROCULT, PNEUMACULT, PROSTACULT, RELESR, ROBOSEP, ROSETTESEP, SEPMATE, SMARTDISH, SPINSEP, STEMDIFF, STEMSEP, STEMSPAN, and STEMVISION are trademarks of STEMCELL Technologies Canada Inc. All other trademarks and registered trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.

正常及肿瘤干细胞和祖细胞的鉴定、评估和分选

ALDEFLUOR™是一种非免疫的荧光试剂,用于检测80多种组织中表达高活性乙醛脱氢酶(ALDHbr)的细胞,已被超过1000篇文献所引用。据报道,ALDH在各种谱系的正常及肿瘤干细胞和祖细胞中高表达,包括造血细胞、乳腺细胞、内皮细胞、间充质细胞和神经细胞。只有具有完整细胞膜的活细胞才能保留ALDEFLUOR™反应产物,所以本检测体系只鉴定有活性的ALDHbr细胞。ALDEFLUOR™是一种无毒且操作简便的试剂盒,无需抗体染色,并与标准的细胞分选和分析仪器兼容。

ALDEFLUOR™如何检测正常细胞和肿瘤祖细胞

该试剂包含 ALDH 的无毒荧光底物—BODIPY-氨基乙醛(BAAA),可在完整活体细胞中自由扩散。在存在ALDH的情况下,BAAA转化为带负电荷的产物BODIPY-氨基乙酸盐(BAA),并保留在细胞内。BAA在细胞内累积可导致荧光增强,可以用流式细胞仪分析检测高表达的ALDH(ALDHbr)细胞。观看本视频,了解更多有关ALDEFLUOR™工作原理的信息。

查看所有产品>

为何使用 ALDEFLUOR™?

  • 通过ALDH活性检测具活性的正常或肿瘤细胞。无需抗体染色。
  • 可用于多种细胞类型和物种。
  • 仅识别细胞膜完整的活细胞。兼容免疫表型分析。
  • 超过1000篇文献引用。
  • 操作简单,重复性高。与标准细胞分析仪兼容。

ALDEFLUOR™ 产品

ALDEFLUOR™ 试剂盒

推荐应用:

从正常和肿瘤组织中检测干细胞和祖细胞

物种:

人,小鼠,大鼠

ALDHbr 分析试剂盒

推荐应用:

脐带血 ALDHbrCD34+ 造血干细胞和祖细胞的检测

物种:

ALDEFLUOR™ 分析缓冲液

推荐应用:

用免疫荧光标记的抗体对 ALDEFLUOR™ 反应细胞进行复染

物种:

人,小鼠,大鼠

相关 ALDEFLUOR™ 产品:

查看细节
折叠详情

优化 ALDEFLUOR™ 用于各种组织类型

ALDEFLUOR™ 最初开发并优化最初用于检测人血液和骨髓中的造血干/祖细胞。随后,它也被验证可以检测许多其他组织类型(包括乳腺、结肠、肺、胰腺和甲状腺)以及肿瘤细胞系中的正常细胞和恶性细胞。根据您的目标组织类型优化ALDEFLUOR™方案可以显著提高荧光强度,从而优化分析结果。观看本视频,了解我们的科学家如何在乳腺组织中增加ALDHbr细胞的荧光强度,学习如何优化方案以满足您的研究需要。

查看所有产品>

相关资源

Key Applications

Publications on Normal Cells

Hematopoietic Cells

Boxall SA et al. (2008) Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplant 43(8): 627-35.
Capoccia BJ et al. (2009) Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113(21): 5340-51.
Christ O et al. (2007) Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 92(9): 1165-72.
Fallon P et al. (2003) Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 122: 99-108.
Gentry T et al. (2007) Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood. Cytotherapy 9(6): 569-76.
Gentry T et al. (2007) Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 9(3): 259-74.
Gündüz E et al. (2010) Evaluation of mobilized peripheral stem cells according to CD34 and aldehyde dehydrogenase expression and effect of SSC(lo) ALDH(br) cells on hematopoietic recovery. Cytotherapy 12(8): 1006-12.
Hess DA et al. (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104(6): 1648-55.
Hess DA et al. (2008) Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 26(3): 611-20.
Liu C et al. (2010) Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation. Blood 116(25): 5518-27.
Muramoto GG et al. (2010) Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells 28(3): 523-34.
Pearce DJ & Connet D. (2007) The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Exp Hematol 35(9): 1437-46.
Pierre-Louis O et al. (2009) Dual SP/ALDH functionalities refine the human hematopoietic Lin-CD34+CD38- stem/progenitor cell compartment. Stem Cells 27(10): 2552-62.
Povsic TJ et al. (2009) Aldehyde dehydrogenase activity allows reliable EPC enumeration in stored peripheral blood samples. J Thromb Thrombolysis 28(3): 259-65.
Povsic TJ et al. (2010) Aging is not associated with bone marrow-resident progenitor cell depletion. J Gerontol A Biol Sci Med Sci 65(10): 1042-50.
Sondergaard CS et al. (2010) Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction. J Transl Med 8: 24.
Storms RW et al. (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96: 9118-23.
Shoulars K et al. (2016) Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay. Blood 127(19):2346-54.

Endothelial Cells

Mammary Cells

Ginestier C et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5): 555-67.
Liu S et al. (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105(5): 1680-5.

Mesenchymal Cells

Pancreatic Cells

Prostate Cells

Yao M et al. (2010) Prostate-regenerating capacity of cultured human adult prostate epithelial cells. Cells Tissues Organs 191(3): 203-12.

Publications on Cancer Cells

Cancer Stem Cells: Review Articles

Alison MR et al. (2011) Cancer Stem Cells: Problems for Therapy? J Pathol 223(2): 147-161.
Alison MR et al. (2010) Finding Cancer Stem Cells: Are Aldehyde Dehydrogenases Fit for Purpose? J Pathol 222(4): 335-44.
Ma I & Allan AL. (2011) The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem Cells. Stem Cell Rev & Rep 7(2): 292-306.

Breast Cancer Cells

Alam M et al. (2013) MUC1-C Oncoprotein Activates ERK→C/EBP Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells. J Biol Chem 288(43): 30892-903.
Atkinson RL et al. (2013) Cancer Stem Cell Markers Are Enriched in Normal Tissue Adjacent to Triple Negative Breast Cancer and Inversely Correlated with DNA Repair Deficiency. Breast Cancer Res 15(5): R77.
Azzam DJ et al. (2013) Triple Negative Breast Cancer Initiating Cell Subsets Differ in Functional and Molecular Characteristics and in γ-Secretase Inhibitor Drug Responses. EMBO Mol Med 5(10): 1502-22.
Buckley NE et al. (2013) BRCA1 Is a Key Regulator of Breast Differentiation Through Activation of Notch Signalling with Implications for Anti-Endocrine Treatment of Breast Cancers. Nucl Acids Res 41(18): 8601-14.
Buijs JT et al. (2012) The BMP2/7 Heterodimer Inhibits the Human Breast Cancer Stem Cell Subpopulation and Bone Metastases Formation. Oncogene 31(17): 2164-74.
Chen D et al. (2013) ANTXR1, a Stem Cell-Enriched Functional Biomarker, Connects Collagen Signaling to Cancer Stem-Like Cells and Metastasis in Breast Cancer. Cancer Res 73(18): 5821-33.
Conti L et al. (2013) The Noninflammatory Role of High Mobility Group Box 1/Toll-Like Receptor 2 Axis in the Self-Renewal of Mammary Cancer Stem Cells. FASEB J 27(12): 4731-44.
Ithimakin S et al. (2013) HER2 Drives Luminal Breast Cancer Stem Cells in the Absence of HER2 Amplification: Implications for Efficacy of Adjuvant Trastuzumab. Cancer Res 73(5): 1635-46.
Kundu N et al. (2014) Prostaglandin E Receptor EP4 Is a Therapeutic Target in Breast Cancer Cells with Stem-Like Properties. Breast Cancer Res TR 143(1): 19-31.
Liu S et al. (2008) BRCA1 Regulates Human Mammary Stem/ Progenitor Cell Fate. PNAS 105(5): 1680-85.
Liu P et al. (2013) Disulfiram Targets Cancer Stem-Like Cells and Reverses Resistance and Cross-Resistance in Acquired Paclitaxel-Resistant Triple-Negative Breast Cancer Cells. Brit J Cancer 109(7): 1876-85.
Londoño-Joshi AI et al. (2014) Effect of Niclosamide on Basal-Like Breast Cancers. Mol Cancer Ther 13(4):800-11.
McClements L et al. (2013) Targeting Treatment-Resistant Breast Cancer Stem Cells with FKBPL and its Peptide Derivative, AD-01, Via the CD44 Pathway. Clin Cancer Res 19(14): 3881-93.
Piva M et al. (2014) Sox2 Promotes Tamoxifen Resistance in Breast Cancer Cells. EMBO Mol Med 6(1): 66-79.
Rustighi A et al. (2014) Prolyl-Isomerase Pin1 Controls Normal and Cancer Stem Cells of the Breast. EMBO Mol Med 6(1): 99-119.
Salvador MA et al. (2013) The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression. Clin Cancer Res 19(23): 6520-31.
Vazquez-Martin A et al. (2013) Reprogramming of Non-Genomic Estrogen Signaling by the Stemness Factor SOX2 Enhances the Tumor-Initiating Capacity of Breast Cancer Cells. Cell Cycle 12(22): 3471-77.
Wang X et al. (2013) PPARγ Maintains ERBB2-Positive Breast Cancer Stem Cells. Oncogene 32(49): 5512-21.
Yamamoto M et al. (2013) NF-κB Non-Cell-Autonomously Regulates Cancer Stem Cell Populations in the Basal-Like Breast Cancer Subtype. Nat Commun 4: 2299.
Yu F et al. (2011) Kruppel-Like Factor 4 (KLF4) is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion. Oncogene 30(18): 2161-272.
Zhou Y et al. (2014) The miR-106b25 Cluster Promotes Bypass of Doxorubicin-Induced Senescence and Increase in Motility and Invasion by Targeting the E-Cadherin Transcriptional Activator EP300. Cell Death Differ 21(3): 462-74.

Skin Cancer Cells

Boonyaratanakornkit JB et al. (2010) Selection of Tumorigenic Melanoma Cells Using ALDH. J Invest Dermatol 130(12): 2799– 808.

Thyroid Cancer Cells

Todaro M et al. (2010) Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells. Cancer Res 70(21): 8874-85.
Copyright © 2025 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, Scientists Helping Scientists, AGGREWELL, CELLADHERE, CLONACELL, EASYPLATE, EASYSEP, ENDOCULT, EPICULT, ESCULT, ERYTHROCLEAR, FRESR, GLOCELL, MAMMOCULT, MEGACULT, MESENCULT, METHOCULT, MYELOCULT, NEUROCULT, PNEUMACULT, PROSTACULT, RELESR, ROBOSEP, ROSETTESEP, SEPMATE, SMARTDISH, SPINSEP, STEMDIFF, STEMSEP, STEMSPAN, and STEMVISION are trademarks of STEMCELL Technologies Canada Inc. All other trademarks and registered trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.