若您需要咨询产品或有任何技术问题,请通过官方电话 400 885 9050 或邮箱 info.cn@stemcell.com 与我们联系。

成分明确、无血清的乳腺球和肿瘤球培养基

MammoCult™是乳腺球和肿瘤球培养领域发表文献最多的商用培养基。乳腺球培养源自原代乳腺组织或细胞系,而肿瘤球则培养自多种组织的原代肿瘤细胞和癌细胞系。该培养基已成功应用于多种乳腺癌细胞系的肿瘤球生成,包括MCF7、MCF10A、SKBR3、MDA-MB-231、AU565、SUM149和BT474等。除被乳腺癌研究学者使用外,这款成分明确的无血清培养基亦适用于卵巢、肺、结肠等多组织来源的细胞球培养实验。

培养乳腺球和肿瘤球

三维球体培养技术相较于传统单层培养具有更高的生理相关性。乳腺球培养体系通过将乳腺上皮细胞以低密度接种,防止细胞贴壁生长,使其以悬浮球状团簇形式扩增。该体系能够在体外扩增乳腺干细胞和祖细胞,并支持乳腺癌干细胞及细胞系的肿瘤球培养。观看视频,了解如何使用MammoCult™培养基轻松生成乳腺球和肿瘤球。

乳腺癌研究

乳腺癌研究人员选用MammoCult™培养基培养乳腺癌干细胞或细胞系来源的肿瘤球。除MammoCult™外,我们提供全套癌症研究工具,包括专用细胞培养基、细胞分选试剂及干细胞检测试剂盒,助力您的研究。观看视频,了解 ALDEFLUOR™EpiCult™ 如何推动乳腺癌研究进展。

为何要使用 MammoCult™ ?

  • 无血清、化学成分确定的配方
  • 可生成大量可传代的乳腺球与肿瘤球
  • 支持乳腺癌细胞系的长期维持培养
  • 乳腺组织球体培养领域发表文献最多的商用培养基

乳腺细胞培养产品

MammoCult™ 培养基(人)

MammoCult™ Medium (Human)

推荐用于:

培养乳腺球或肿瘤球

物种:

EpiCult™-B 培养基(人)

EpiCult™-B Medium (Human)

推荐用于:

用于祖细胞定量检测的集落形成单位(CFU)测定

物种:

EpiCult™-B 培养基(小鼠)

EpiCult™-B Medium (Mouse)

推荐用于:

用于祖细胞定量检测的集落形成单位(CFU)测定

物种:

小鼠

EpiCult™-C 人培养基试剂盒

EpiCult™-C Human Medium Kit

推荐用于:

人乳腺上皮细胞的短期培养

物种:

EpiCult™Plus 培养基

EpiCult™-B Medium (Human)

推荐用于:

人、小鼠和大鼠上皮干细胞的培养(人角质形成细胞或人气道细胞除外)

物种:

人、小鼠和大鼠
查看详情
收起详情


科学资源



Key Applications

Breast Cancer Cell Lines

HBL-100
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

KPL-1
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

MDA-MB-453
Zhao S et al. (2013) HER2 overexpression-mediated inflammatory signaling enhances mammosphere formation through up-regulation of aryl hydrocarbon receptor transcription. Cancer Lett 330(1): 41-8.

SUM 159
Kendellen MF et al. (2014) Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene 33(10): 1297-305.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.
Del Vecchio CA et al. (2012) Epidermal Growth Factor Receptor Variant III Contributes to Cancer Stem Cell Phenotypes in Invasive Breast Carcinoma. Cancer Res 72(10): 2657-71.
Korkaya H et al. (2012) Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population. Mol Cell 47(4): 570-84.

BT-20
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

HCC202
Deng et al. (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4): e10277.

MCF7
D'Assoro AB et al. (2014) The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene 33(5): 599-610.
Kundu N et al. (2014) Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res Treat 143(1): 19-31.
Rajabi H et al. (2014) MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene 33(13): 1680-9.
Alam M et al. (2013) MUC1-C Oncoprotein Activates ERK->C/EBPβ Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells. J Biol Chem 288(43): 30892-903.
Bhat-Nakshatri P et al. (2013) Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 3: 2530.
Bianco C et al. (2013) Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol 228(6): 1174-88.
Cho JH et al. (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 288(5): 3406-18.
Lee JH et al. (2013) The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncol Rep 29(3): 917-24.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.
Vares G et al. (2013) Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One 8(10): e77124.
Wei X et al. (2013) Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem 24(4): 658-68.
Wolf J et al. (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6): R109.
Zhao S et al. (2013) HER2 overexpression-mediated inflammatory signaling enhances mammosphere formation through up-regulation of aryl hydrocarbon receptor transcription. Cancer Lett 330(1): 41-8.
Gilani RA et al. (2012) The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat 135(3): 681-92.
Korkaya H et al. (2012) Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population. Mol Cell (47(4): 570-84.
Palaniyandi K et al. (2012) Human Breast Cancer Stem Cells Have Significantly Higher Rate of Clathrin-Independent and Caveolin-Independent Endocytosis than the Differentiated Breast Cancer Cells. J Cancer Sci Ther 4(7): 214-222.
Wong NK et al. (2012) Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations. Cancer Med 1(2): 105-13.
Wu F et al. (2012) Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity. Cell Signal 24(11): 1989-98.
Zhao S et al. (2012) Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Lett 317(2): 192-8.
Kumar A et al. (2011) Evidence that aberrant expression of tissue transglutaminase promotes stem cell characteristics in mammary epithelial cells. PLoS One 6(6): e20701.
Deng et al. (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4): e10277.

MDA-MB-468
Alam M et al. (2013) MUC1-C Oncoprotein Activates ERK->C/EBPβ Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells. J Biol Chem 288(43): 30892-903.

T-47D
Axlund SD et al. (2013) Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer 4(1): 36-49.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.
Vares G et al. (2013) Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One 8(10): e77124.
Deng et al. (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4): e10277.

BT-474
D'Assoro AB et al. (2014) The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene 33(5): 599-610.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

HCC1599
Zhang CC et al. (2012) Biomarker and pharmacologic evaluation of the γ-secretase inhibitor PF-03084014 in breast cancer models. Clin Cancer Res 18(18): 5008-19.

MDA-MB-231
D'Assoro AB et al. (2014) The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene 33(5): 599-610.
Kendellen MF et al. (2014) Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene 33(10): 1297-305.
Kundu N et al. (2014) Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res 143(1): 19-31.
Rajabi H et al. (2014) MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene 33(13): 1680-9.
Bhat-Nakshatri P et al. (2013) Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 3: 2530.
Dai L et al. (2013) CD147-dependent heterogeneity in malignant and chemoresistant properties of cancer cells. Am J Pathol 182(2): 577-85.
Di Cello F et al. (2013) Knockdown of HMGA1 inhibits human breast cancer cell growth and metastasis in immunodeficient mice. Biochem Biophys Res Commun 434(1): 70-4.
Han YK et al. (2013) A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochem Biophys Res Commun 430(4): 1329-33.
Lee JH et al. (2013) The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncol Rep 29(3): 917-24.
Lim S et al. (2013) SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One 8(6): e66558.
Shen J et al. (2013) High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics. ACS Nano 7(11): 9867-80.
Wolf J et al. (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6): R109.
Hu K et al. (2012) Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res 14(1): R22.
Rao R et al. (2012)  Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther 11(4): 973-83.
Stratford AL et al. (2012) Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers. Stem Cells 30(7): 1338-48.

SKBR3
Kundu N et al. (2014) Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res 143(1): 19-31.
Alam M et al. (2013) MUC1-C Oncoprotein Activates ERK->C/EBPβ Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells. J Biol Chem 288(43): 30892-903.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

TMD-231
Bhat-Nakshatri P et al. (2013) Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 3: 2530.

GI-101A
Wang H et al. (2012) Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 10(1): 167.

Hs578T
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

MDA-MB-436
Bhat-Nakshatri P et al. (2013) Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Sci Rep 3: 2530.
Smart CE et al. (2013) In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 8(6): e64388.

SUM149
D'Assoro AB et al. (2014) The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene 33(5): 599-610.
Kendellen MF et al. (2014) Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene 33(10): 1297-305.
Qiu M et al. (2013) Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett 328(2): 261-70.
Wolf J et al. (2013) A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res 15(6): R109.
Del Vecchio CA et al. (2012) Epidermal Growth Factor Receptor Variant III Contributes to Cancer Stem Cell Phenotypes in Invasive Breast Carcinoma. Cancer Res 72(10): 2657-71.
Hu K et al. (2012) Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res 14(1): R22.
Stratford AL et al. (2012) Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers. Stem Cells 30(7): 1338-48.
Zhang CC et al. (2012) Biomarker and pharmacologic evaluation of the γ-secretase inhibitor PF-03084014 in breast cancer models. Clin Cancer Res 18(18): 5008-19.

ZR-75-1
Wu F et al. (2012) Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity. Cell Signal 24(11): 1989-98.
Deng et al. (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4): e10277.
Copyright © 2025 by STEMCELL Technologies Inc. All rights reserved including graphics and images. STEMCELL Technologies & Design, STEMCELL Shield Design, Scientists Helping Scientists, AGGREWELL, CELLADHERE, CLONACELL, EASYPLATE, EASYSEP, ENDOCULT, EPICULT, ESCULT, ERYTHROCLEAR, FRESR, GLOCELL, MAMMOCULT, MEGACULT, MESENCULT, METHOCULT, MYELOCULT, NEUROCULT, PNEUMACULT, PROSTACULT, RELESR, ROBOSEP, ROSETTESEP, SEPMATE, SMARTDISH, SPINSEP, STEMDIFF, STEMSEP, STEMSPAN, and STEMVISION are trademarks of STEMCELL Technologies Canada Inc. All other trademarks and registered trademarks are the property of their respective holders. While STEMCELL has made all reasonable efforts to ensure that the information provided by STEMCELL and its suppliers is correct, it makes no warranties or representations as to the accuracy or completeness of such information.
Copyright © 2025 by STEMCELL Technologies. All rights reserved.