Hawkins RD et al. (OCT 2011)
Cell Research 21 10 1393--1409
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.
Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4me1 and H3K27ac,which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.
View Publication
Qiu W et al. (SEP 2011)
Biochemical and biophysical research communications 413 1 98--104
Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However,its downstream targets in MSC are not well characterized. Thus,using DNA microarrays,we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5(T253) and hMSC-LRP5(T244) cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling,respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling,but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion,canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.
View Publication
Aanei CM et al. (NOV 2011)
Experimental cell research 317 18 2616--29
Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells.
Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology,focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS),CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin,pFAK [Y(397)],and HSP90α/β and p130CAS,and analysed for reactivity,intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences,and subcellular localisation analysis revealed that in pathological MSCs,paxillin,pFAK [Y(397)],and HSP90α/β formed nuclear molecular complexes. Increased expression of paxillin,pFAK [Y(397)],and HSP90α/β and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further,because FAK is an HSP90α/β client protein,these results suggest the utility of HSP90α/β inhibition as a target for adjuvant therapy for myelodysplasia.
View Publication
Inamdar AA et al. (JAN 2012)
Mycopathologia 173 1 13--20
A Model to Evaluate the Cytotoxicity of the Fungal Volatile Organic Compound 1-octen-3-ol in Human Embryonic Stem Cells
Microbial growth in damp indoor environments has been correlated with risks to human health. This study was aimed to determine the cytotoxicity of 1-octen-3-ol (mushroom alcohol")
View Publication
Kwon C et al. (OCT 2011)
Nature cell biology 13 10 1244--51
Notch post-translationally regulates β-catenin protein in stem and progenitor cells.
Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-catenin signalling often intersect in stem and progenitor cells and regulate each other transcriptionally. The biological outcome of signalling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here,we show that membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-catenin protein. Notch-dependent regulation of β-catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did,however,require the endocytic adaptor protein Numb and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-catenin protein levels in stem and progenitor cells.
View Publication
ten Berge D et al. (SEP 2011)
Nature cell biology 13 9 1070--5
Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells.
Pluripotent stem cells exist in naive and primed states,epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs,the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast,EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs,and are required to inhibit their differentiation into EpiSCs. Moreover,we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors,and support the derivation of new ESC lines,including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition,but also identify Wnt as an essential and limiting ESC self-renewal factor.
View Publication
Ausubel LJ et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 147--159
GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
Human pluripotent stem cells (PSCs),which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs),represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such,it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells,animal-based matrices,or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents,it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless,as the field develops,it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents,particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus,even for cell lines previously exposed to xenogeneic reagents,it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel,an animal-matrix,and CELLstart,an animal-free matrix,and these can be used to produce hESCs as part of a clinical manufacturing process.
View Publication
Liu Y et al. (NOV 2011)
Biomaterials 32 32 8058--66
A synthetic substrate to support early mesodermal differentiation of human embryonic stem cells.
Our ability to guide differentiation of human pluripotent stem cells (hPSCs) toward desired lineages efficiently and reproducibly in xeno-free conditions is the key to advancing hPSC technology from the laboratory to clinical use. Here we report an engineered biomimetic substrate functionalized with both peptide ligands for α5β1 and α6β1 integrins to support efficient early mesodermal differentiation of human embryonic stem cells (hESCs) when cultured in a differentiation medium containing BMP4. In contrast,mesodermal differentiation is not induced on substrates functionalized with either ligand alone even though the culture medium is identical. Mesodermal differentiation was characterized by immunofluorescent staining,flow cytometric analysis,and RT-PCR analysis of early mesodermal markers Brachyury,Mixl1,and Wnt3. The early mesodermal progenitors derived on the substrate functionalized with both integrin ligands have the normal developmental potential to further differentiate along the hemato-endothelial and cardiac lineages. Immobilized ligands for α5β1 and α6β1 integrins both are permissive,necessary,and sufficient insoluble ligands in this engineered system to support early mesodermal differentiation of hESCs. This synthetic substrate,in conjunction with defined soluble factors,constructs a well-controlled and xeno-free early mesodermal differentiation niche that offers advantages over the previously reported niche constructed with the Matrigel-coated substrate.
View Publication
Cea M et al. (JAN 2011)
PloS one 6 7 e22739
Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.
Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However,while classical,NAD(+)-independent HDACs are an established therapeutic target,the relevance of NAD(+)-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here,we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+)-lowering drug FK866,alone and in combination with traditional HDAC inhibitors. Primary leukemia cells,leukemia cell lines,healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol,cambinol,EX527) and with FK866,with or without addition of the HDAC inhibitors valproic acid,sodium butyrate,and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis,and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+) levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells,but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells,HDAC inhibitors were found to induce upregulation of Bax,a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result,leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion,NAD(+)-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.
View Publication
Niwa A et al. (JAN 2011)
PLoS ONE 6 7 e22261
A novel Serum-Free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors
Elucidating the in vitro differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose,a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study,we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover,single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new,robust,and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.
View Publication
Sorio C et al. (JAN 2011)
PloS one 6 7 e22212
Defective CFTR expression and function are detectable in blood monocytes: development of a new blood test for cystic fibrosis.
BACKGROUND Evaluation of cystic fibrosis transmembrane conductance regulator (CFTR) functional activity to assess new therapies and define diagnosis of cystic fibrosis (CF) is cumbersome. It is known that leukocytes express detectable levels of CFTR but the molecule has not been characterized in these cells. In this study we aim at setting up and validating a blood test to evaluate CFTR expression and function in leukocytes. DESCRIPTION Western blot,PCR,immunofluorescence and cell membrane depolarization analysis by single-cell fluorescence imaging,using the potential-sensitive DiSBAC(2)(3) probe were utilized. Expression of PKA phosphorylated,cell membrane-localized CFTR was detected in non-CF monocytes,being undetectable or present in truncated form in monocytes derived from CF patients presenting with nonsense mutations. CFTR agonist administration induced membrane depolarization in monocytes isolated from non-CF donors (31 subjects) and,to a lesser extent,obligate CFTR heterozygous carriers (HTZ: 15 subjects),but it failed in monocytes from CF patients (44 subjects). We propose an index,which values in CF patients are significantly (ptextless0.001) lower than in the other two groups. Nasal Potential Difference,measured in selected subjects had concordant results with monocytes assay (Kappa statistic 0.93,95%CI: 0.80-1.00). RESULTS AND SIGNIFICANCE CFTR is detectable and is functional in human monocytes. We also showed that CFTR-associated activity can be evaluated in 5 ml of peripheral blood and devise an index potentially applicable for diagnostic purposes and both basic and translational research: from drug development to evaluation of functional outcomes in clinical trials.
View Publication
Bai R-Y et al. (SEP 2011)
Neuro-oncology 13 9 974--82
Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme.
Glioblastoma multiforme (GBM) is the most common and aggressive brain cancer,and despite treatment advances,patient prognosis remains poor. During routine animal studies,we serendipitously observed that fenbendazole,a benzimidazole antihelminthic used to treat pinworm infection,inhibited brain tumor engraftment. Subsequent in vitro and in vivo experiments with benzimidazoles identified mebendazole as the more promising drug for GBM therapy. In GBM cell lines,mebendazole displayed cytotoxicity,with half-maximal inhibitory concentrations ranging from 0.1 to 0.3 µM. Mebendazole disrupted microtubule formation in GBM cells,and in vitro activity was correlated with reduced tubulin polymerization. Subsequently,we showed that mebendazole significantly extended mean survival up to 63% in syngeneic and xenograft orthotopic mouse glioma models. Mebendazole has been approved by the US Food and Drug Administration for parasitic infections,has a long track-record of safe human use,and was effective in our animal models with doses documented as safe in humans. Our findings indicate that mebendazole is a possible novel anti-brain tumor therapeutic that could be further tested in clinical trials.
View Publication