技术资料
-
Smedman C et al. (SEP 2011) Scandinavian journal of immunologyFluoroSpot analysis of TLR-activated monocytes reveals several distinct cytokine secreting subpopulations.
Monocytes have long been considered a heterogeneous group of cells both in terms of morphology and function. In humans,three distinct subsets have been described based on their differential expression of the cell surface markers CD14 and CD16. However,the relationship between these subsets and the production of cytokines has for the most part been based on ELISA measurements,making it difficult to draw conclusions as to their functional profile on the cellular level. In the present study,we have investigated lipoteichoic acid (LTA) and lipopolysaccharide (LPS) induced cytokine secretion by monocytes using the FluoroSpot technique. This method measures the number of cytokine secreting cells on the single cell level and uses fluorescent detection,allowing for the simultaneous analysis of two cytokines from the same population of isolated cells. By this approach,human monocytes from healthy volunteers could be divided into several subgroups as IL-1β,IL-6,TNF-α and MIP-1β were secreted by larger populations of responding cells (25.9-39.2%) compared to the smaller populations of GM-CSF (9.1%),IL-10 (1.3%) and IL-12p40 (1.2%). Furthermore,when studying co-secretion in FluoroSpot,an intricate relationship between the monocytes secreting IL-1β and/or IL-6 and those secreting TNF-α,MIP-1β,GM-CSF,IL-10 and IL-12p40 was revealed. In this way,dissecting the secretion pattern of the monocytes in response to TLR-2 or TLR-4 stimulation,several subpopulations with distinct cytokine secreting profiles could be identified. View Publication -
Abilez OJ et al. (SEP 2011) Biophysical journal 101 6 1326--1334Multiscale computational models for optogenetic control of cardiac function
The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease,paving the way toward various novel therapeutic applications. Here,we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally,we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector,and sorted and expanded the genetically engineered cells. Via directed differentiation,we created channelrhodopsin-expressing cardiomyocytes,which we subjected to optical stimulation. To quantify the impact of photostimulation,we assessed electrical,biochemical,and mechanical signals using patch-clamping,multielectrode array recordings,and video microscopy. Computationally,we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation,the channel opens and allows sodium ions to enter the cell,inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes,pulse widths,and frequencies. To illustrate the potential of the proposed approach,we virtually injected channelrhodopsin-expressing cells into different locations of a human heart,and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational toolbox allows us to virtually probe landscapes of process parameters,and identify optimal photostimulation sequences toward pacing hearts with light. ?? 2011 Biophysical Society. View Publication -
She K and Craig AM (JAN 2011) PloS one 6 9 e24423NMDA receptors mediate synaptic competition in culture.
BACKGROUND: Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo,where activity of inputs can be differentially regulated,but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here,we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. METHODOLOGY/PRINCIPAL FINDINGS: GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons,both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures,synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. CONCLUSIONS/SIGNIFICANCE: The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde 'reward' signal generated by WT neurons,although in this paradigm there was no 'punishment' signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous system. View Publication -
Hudson J et al. (JUN 2012) Stem cells and development 21 9 1513--23Primitive cardiac cells from human embryonic stem cells.
Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study,we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures,single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells,corresponding to an increased expression of pluripotency markers OCT4 and NANOG,and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed,aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols,with induction of primitive streak cells using bone morphogenetic protein 4 and activin A,followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5,thus indicating the production of large numbers of immature cardiomyocytes (˜65,000/cm(2) or ˜1.5 per input hESC). This protocol was shown to be effective in HES3,H9,and,to a lesser,extent,MEL1 hESC lines. In addition,we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression,whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation,and potentially for the future treatment of heart failure. View Publication -
Dai L et al. (DEC 2011) Proteomics 11 23 4529--40Dose-dependent proteomic analysis of glioblastoma cancer stem cells upon treatment with γ-secretase inhibitor.
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation,a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation,as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data,possibly due to their crosstalk with Notch Signaling. Overall,this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs. View Publication -
Poornima V et al. (MAR 2012) Journal of molecular neuroscience : MN 46 3 585--94P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization.
Activation of P2X(7) receptor (P2X(7)R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X(7)R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2',3'-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X(7)R to form large pore,though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions,e.g. ischemia,when P2X(7)R/pannexin is also known to be activated. Therefore,we hypothesize that extracellular calcium ([Ca(2+)](o)) plays an important role in the coupling of P2X(7)R-panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X(7)R and panx1 expressing N2A cell increases in ([Ca(2+)](o))-free solution. In [Ca(2+)](o)-free solution,fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca(2+)](o) did not show such leakage. Like N2A cells,mixed culture of neuron and glia,derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker,carbenoxolone or P2X(7)R antagonists,Brilliant Blue G,and oxidized ATP. Furthermore P2X(7)R and panx1 were co-immunoprecipitated. The amount of P2X(7)R protein pulled-down with panx1,increased by twofold when cells were incubated 30 min in [Ca(2+)](o)-free buffer. Taken together,the results of this study demonstrate the activation and association of P2X(7)R-panx1,triggered by the removal of [Ca(2+)](o). View Publication -
Orecchia A et al. (JAN 2011) PloS one 6 9 e24307Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells.
Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently,inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis,colitis,airway inflammation and asthma. So far,little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins,the class III HDAC. In this study,we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC),a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol,a specific sirtuin inhibitor,in HDMEC response to pro-inflammatory cytokines. We found that,even though sirtinol treatment alone affected only long-term cell proliferation,it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact,sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells,as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably,sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2,we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally,we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether,these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement. View Publication -
Kleinstreuer NC et al. (NOV 2011) Toxicology and Applied Pharmacology 257 1 111--121Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics
Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism,pantothenate and CoA biosynthesis,glutathione metabolism,and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information,including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. View Publication -
Wang X et al. (NOV 2011) Lab on a chip 11 21 3656--3662Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
Sorting (or isolation) and manipulation of rare cells with high recovery rate and purity are of critical importance to a wide range of physiological applications. In the current paper,we report on a generic single cell manipulation tool that integrates optical tweezers and microfluidic chip technologies for handling small cell population sorting with high accuracy. The laminar flow nature of microfluidics enables the targeted cells to be focused on a desired area for cell isolation. To recognize the target cells,we develop an image processing methodology with a recognition capability of multiple features,e.g.,cell size and fluorescence label. The target cells can be moved precisely by optical tweezers to the desired destination in a noninvasive manner. The unique advantages of this sorter are its high recovery rate and purity in small cell population sorting. The design is based on dynamic fluid and dynamic light pattern,in which single as well as multiple laser traps are employed for cell transportation,and a recognition capability of multiple cell features. Experiments of sorting yeast cells and human embryonic stem cells are performed to demonstrate the effectiveness of the proposed cell sorting approach. View Publication -
Avery S (SEP 2011) Current protocols in stem cell biology Chapter 5 Unit5C.1Generation of inducible shRNAi human embryonic stem cell lines.
This unit describes the generation of tetracycline-inducible short hairpin RNA interference (shRNAi) human embryonic stem cell (hESC) lines. Using this vector-based approach enables stable and long-term expression of target hairpins under the control of doxycycline/tetracycline. Target degradation can be controlled in both a dose- and time-dependent manner that can even be switched off,depending upon the particular requirements of the study. View Publication -
Torrano V et al. (NOV 2011) Blood 118 18 4910--8ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor.
ETV6-RUNX1 gene fusion is usually an early,prenatal event in childhood acute lymphoblastic leukemia (ALL). Transformation results in the generation of a persistent (> 14 years) preleukemic clone,which postnatally converts to ALL after the acquisition of necessary secondary genetic alterations. Many cancer cells show some expression of the erythropoietin receptor (EPOR) gene,although the functionality" of any EPOR complexes and their relevant signaling pathways in nonerythroid cells has not been validated. EPOR mRNA is selectively and ectopically expressed in ETV6-RUNX1(+) ALL but the presence of a functional EPOR on the cell surface and its role in leukemogenesis driven by ETV6-RUNX1 remains to be identified. Here we show that ETV6-RUNX1 directly binds the EPOR promoter and that expression of ETV6-RUNX1 alone in normal pre-B cells is sufficient to activate EPOR transcription. We further reveal that murine and human ETV6-RUNX1(+) cells expressing EPOR mRNA have EPO ligand binding activity that correlates with an increased cell survival through activation of the JAK2-STAT5 pathway and up-regulation of antiapoptotic BCL-XL. These data support the contention that ETV6-RUNX1 directly activates ectopic expression of a functional EPOR and provides cell survival signals that may contribute critically to persistence of covert premalignant clones in children. View Publication -
Pasha Z et al. (JAN 2011) PloS one 6 8 e23667Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.
UNLABELLED The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules. METHODS AND RESULTS SMs from young male Oct3/4-GFP(+) transgenic mouse were treated with DNA methyltransferase (DNMT) inhibitor,RG108. Two weeks later,GFP(+) colonies of SM derived iPS cells (SiPS) expressing GFP and with morphological similarity of mouse embryonic stem (ESCs) were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity,expressed SSEA1,displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs) formation yielded spontaneously contracting EBs having morphological,molecular,and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group),extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group). A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS Reprogramming of SMs by DNMT inhibitor is a simple,reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号