Wend P et al. (FEB 2013)
EMBO molecular medicine 5 2 264--279
WNT10B/$$-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer.
Wnt/$$-catenin signalling has been suggested to be active in basal-like breast cancer. However,in highly aggressive metastatic triple-negative breast cancers (TNBC) the role of $$-catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active $$-catenin in human TNBC and predicts survival-outcome of patients with both TNBC and basal-like tumours. We provide evidence that transgenic murine Wnt10b-driven tumours are devoid of ER$$,PR and HER2 expression and can model human TNBC. Importantly,HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost,suggesting a developmentally conserved mode of action. Mechanistically,ChIP analysis uncovered that WNT10B activates canonical $$-catenin signalling leading to up-regulation of HMGA2. Treatment of mouse and human triple-negative tumour cells with two Wnt/$$-catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2,which is necessary and sufficient for proliferation of TNBC cells. Furthermore,HMGA2 expression predicts relapse-free-survival and metastasis in TNBC patients.
View Publication
Zhang R et al. (JAN 2013)
Nature communications 4 1335
A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth,while mechanical,enzymatic or chemical cell dissociation methods are used for cellular passaging. However,these methods are ill defined,thus introducing variability into the system,and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate,which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle,reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used,undefined biological substrates represent a flexible and scalable approach for improving the definition,efficacy and safety of human embryonic stem cell culture systems for research,industrial and clinical applications.
View Publication
Young ARJ et al. ( 2013)
965 1 1--13
Cell senescence as both a dynamic and a static phenotype
It has been 50 years since cellular senescence was first described in human diploid fibroblasts (HDFs),yet its mechanism as well as its physiological and clinical implications are still not fully appreciated. Recent progress suggests that cellular senescence is a collective phenotype,composed of complex networks of effector programs. The balance and quality within the effector network varies depending on the cell type,the nature of the stress as well as the context. Therefore,understanding each of these effectors in the context of the whole network will be necessary in order to fully understand senescence as a whole. Furthermore,searching for new effector programs of senescence will help to define this heterogeneous and complex phenotype according to cellular contexts.
View Publication
Lan F et al. (JAN 2013)
Cell Stem Cell 12 1 101--113
Familial hypertrophic cardiomyopathy (HCM) is a prevalent hereditary cardiac disorder linked to arrhythmia and sudden cardiac death. While the causes of HCM have been identified as genetic mutations in the cardiac sarcomere,the pathways by which sarcomeric mutations engender myocyte hypertrophy and electrophysiological abnormalities are not understood. To elucidate the mechanisms underlying HCM development,we generated patient-specific induced pluripotent stem cell cardiomyocytes (iPSC-CMs) from a ten-member family cohort carrying a hereditary HCM missense mutation (Arg663His) in the MYH7 gene. Diseased iPSC-CMs recapitulated numerous aspects of the HCM phenotype including cellular enlargement and contractile arrhythmia at the single-cell level. Calcium (Ca2+) imaging indicated dysregulation of Ca2+ cycling and elevation in intracellular Ca2+ ([Ca2+] i) are central mechanisms for disease pathogenesis. Pharmacological restoration of Ca2+ homeostasis prevented development of hypertrophy and electrophysiological irregularities. We anticipate that these findings will help elucidate the mechanisms underlying HCM development and identify novel therapies for the disease. textcopyright 2013 Elsevier Inc.
View Publication
Wang D et al. (OCT 2013)
Transfusion 53 10 2134--40
Antibody-mediated glycophorin C coligation on K562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process.
BACKGROUND Glycophorin C (GPC) is necessary in the maintenance of red blood cell structure. Severe autoimmune hemolytic anemia and hemolytic disease of the fetus and newborn (HDFN) have been associated with Gerbich (Ge) blood group system antigens expressed on GPC. Previous in vitro studies with cord blood progenitor cells have shown that anti-Ge suppresses erythropoiesis. STUDY DESIGN AND METHODS Here,we evaluated the K562 erythroleukemic cell line to study the cellular effects of a murine anti-GPC. Cell proliferation was evaluated after treatment with anti-GPC. Flow cytometry was used to evaluate exofacial phosphatidylserine (PS) expression and cell viability (propidium iodide binding). Cell morphology was evaluated under light microscopy with cytospin preparations stained with May-Grünwald Giemsa. RESULTS Anti-GPC dramatically inhibited K562 proliferation and increased PS expression,consistent with cytoplasmic blebbing,suggesting evidence of apoptosis. Z-VAD-FMK,an inhibitor of classical apoptosis,was unable to reverse the suppressive effect of anti-GPC. However,hemin was able to attenuate growth suppression. CONCLUSION Together,the data suggest that anti-GPC suppresses erythroid proliferation through the induction of nonclassical apoptosis.
View Publication
Hirsch HA et al. (JAN 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 3 972--7
Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth.
Metformin,the first-line drug for treating diabetes,inhibits cellular transformation and selectively kills cancer stem cells in breast cancer cell lines. In a Src-inducible model of cellular transformation,metformin inhibits the earliest known step in the process,activation of the inflammatory transcription factor NF-κB. Metformin strongly delays cellular transformation in a manner similar to that occurring upon a weaker inflammatory stimulus. Conversely,inhibition of transformation does not occur if metformin is added after the initial inflammatory stimulus. The antitransformation effect of metformin can be bypassed by overexpression of Lin28B or IL1β,downstream targets of NF-κB. Metformin preferentially inhibits nuclear translocation of NF-κB and phosphorylation of STAT3 in cancer stem cells compared with non-stem cancer cells in the same population. The ability of metformin to block tumor growth and prolong remission in xenografts in combination with doxorubicin is associated with decreased function of the inflammatory feedback loop. Lastly,metformin-based combinatorial therapy is effective in xenografts involving inflammatory prostate and melanoma cell lines,whereas it is ineffective in noninflammatory cell lines from these lineages. Taken together,our observations suggest that metformin inhibits a signal transduction pathway that results in an inflammatory response. As metformin alters energy metabolism in diabetics,we speculate that metformin may block a metabolic stress response that stimulates the inflammatory pathway associated with a wide variety of cancers.
View Publication
Oz S et al. (JAN 2012)
PloS one 7 12 e51458
The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities.
Microtubules (MTs),key cytoskeletal elements in living cells,are critical for axonal transport,synaptic transmission,and maintenance of neuronal morphology. NAP (NAPVSIPQ) is a neuroprotective peptide derived from the essential activity-dependent neuroprotective protein (ADNP). In Alzheimer's disease models,NAP protects against tauopathy and cognitive decline. Here,we show that NAP treatment significantly affected the alpha tubulin tyrosination cycle in the neuronal differentiation model,rat pheochromocytoma (PC12) and in rat cortical astrocytes. The effect on tubulin tyrosination/detyrosination was coupled to increased MT network area (measured in PC12 cells),which is directly related to neurite outgrowth. Tubulin beta3,a marker for neurite outgrowth/neuronal differentiation significantly increased after NAP treatment. In rat cortical neurons,NAP doubled the area of dynamic MT invasion (Tyr-tubulin) into the neuronal growth cone periphery. NAP was previously shown to protect against zinc-induced MT/neurite destruction and neuronal death,here,in PC12 cells,NAP treatment reversed zinc-decreased tau-tubulin-MT interaction and protected against death. NAP effects on the MT pool,coupled with increased tau engagement on compromised MTs imply an important role in neuronal plasticity,protecting against free tau accumulation leading to tauopathy. With tauopathy representing a major pathological hallmark in Alzheimer's disease and related disorders,the current findings provide a mechanistic basis for further development. NAP (davunetide) is in phase 2/3 clinical trial in progressive supranuclear palsy,a disease presenting MT deficiency and tau pathology.
View Publication
Yoshikawa K et al. (FEB 2013)
Biochemical and biophysical research communications 431 1 104--10
Multipotent stem cells are effectively collected from adult human cheek skin.
Skin-derived precursor (SKP) cells are a valuable resource for tissue engineering and regenerative medicine,because they represent multipotent stem cells that differentiate into neural and mesodermal progenies. Previous studies suggest that the stem cell pool decreases with age. Here,we show that human multipotent SKP cells can be efficiently collected from adult cheek/chin skin,even in aged individuals of 70-78years. SKP cells were isolated from 38 skin samples by serum-free sphere culture and examined for the ability to differentiate into neural and mesodermal lineages. The number of spheres obtained from adult facial skin was significantly higher than that of trunk or extremity skin. SKP cells derived from cheek/chin skin exhibited a high ability to differentiate into neural and mesodermal cells relative to those derived from eyelid,trunk,or extremity skin. Furthermore,cheek/chin skin SKP cells were shown to express markers for undifferentiated stem cells,including a high expression level of the Sox9 gene. These results indicate that cheek/chin skin is useful for the recovery of multipotent stem cells for tissue engineering and regenerative therapy.
View Publication
Kechaou N et al. (MAR 2013)
Applied and environmental microbiology 79 5 1491--9
Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening.
In this study,we developed a large-scale screening of bacterial strains in order to identify novel candidate probiotics with immunomodulatory properties. For this,158 strains,including a majority of lactic acid bacteria (LAB),were screened by two different cellular models: tumor necrosis factor alpha (TNF-α)-activated HT-29 cells and peripheral blood mononuclear cells (PBMCs). Different strains responsive to both models (pro- and anti-inflammatory strains) were selected,and their protective effects were tested in vivo in a murine model of influenza virus infection. Daily intragastric administrations during 10 days before and 10 days after viral challenge (100 PFU of influenza virus H1N1 strain A Puerto Rico/8/1934 [A/PR8/34]/mouse) of Lactobacillus plantarum CNRZ1997,one potentially proinflammatory probiotic strain,led to a significant improvement in mouse health by reducing weight loss,alleviating clinical symptoms,and inhibiting significantly virus proliferation in lungs. In conclusion,in this study,we have combined two cellular models to allow the screening of a large number of LAB for their immunomodulatory properties. Moreover,we identified a novel candidate probiotic strain,L. plantarum CNRZ1997,active against influenza virus infection in mice.
View Publication
Han YK et al. (JAN 2013)
Biochemical and biophysical research communications 430 4 1329--1333
A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy.
Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus,many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study,we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells,which are shown by multiple marker or phenotypes of CSCs. Thus,these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus,further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.
View Publication
Lian X et al. (JAN 2013)
Nature protocols 8 1 162--75
Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions.
The protocol described here efficiently directs human pluripotent stem cells (hPSCs) to functional cardiomyocytes in a completely defined,growth factor- and serum-free system by temporal modulation of regulators of canonical Wnt signaling. Appropriate temporal application of a glycogen synthase kinase 3 (GSK3) inhibitor combined with the expression of β-catenin shRNA or a chemical Wnt inhibitor is sufficient to produce a high yield (0.8-1.3 million cardiomyocytes per cm(2)) of virtually pure (80-98%) functional cardiomyocytes in 14 d from multiple hPSC lines without cell sorting or selection. Qualitative (immunostaining) and quantitative (flow cytometry) characterization of differentiated cells is described to assess the expression of cardiac transcription factors and myofilament proteins. Flow cytometry of BrdU incorporation or Ki67 expression in conjunction with cardiac sarcomere myosin protein expression can be used to determine the proliferative capacity of hPSC-derived cardiomyocytes. Functional human cardiomyocytes differentiated via these protocols may constitute a potential cell source for heart disease modeling,drug screening and cell-based therapeutic applications.
View Publication
Menzies AM et al. ( 2012)
Drug design,development and therapy 6 391--405
Dabrafenib and its potential for the treatment of metastatic melanoma.
The purpose of this study is to review the development of BRAF inhibitors,with emphasis on the trials conducted with dabrafenib (GSK2118436) and the evolving role of dabrafenib in treatment for melanoma patients. Fifty percent of cutaneous melanomas have mutations in BRAF,resulting in elevated activity of the mitogen-activated protein kinase signaling pathway. Dabrafenib inhibits the mutant BRAF (BRAF(mut)) protein in melanomas with BRAF(V600E) and BRAF(V600K) genotypes. BRAF(V600E) metastatic melanoma patients who receive dabrafenib treatment exhibit high clinical response rates and compared with dacarbazine chemotherapy,progression-free survival. Efficacy has also been demonstrated in BRAF(V600K) patients and in those with brain metastases. Dabrafenib has a generally mild and manageable toxicity profile. Cutaneous squamous cell carcinomas and pyrexia are the most significant adverse effects. Dabrafenib appears similar to vemurafenib with regard to efficacy but it is associated with less toxicity. It is expected that new combinations of targeted drugs,such as the combination of dabrafenib and trametinib (GSK1120212,a MEK inhibitor),will provide higher response rates and more durable clinical benefit than dabrafenib monotherapy.
View Publication