技术资料
-
Wong NKY et al. (OCT 2012) Cancer medicine 1 2 105--113Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations.
Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors,but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue,we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct,which inhibits signaling through all Notch receptors,and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease,but not a complete abrogation,of these cells in dnMAML-expressing cells. Interestingly,when assessed in secondary assays in vitro or in vivo,there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool,which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population. View Publication -
Raynaud CM et al. (JAN 2013) PLoS ONE 8 1 e54524Human Embryonic Stem Cell Derived Mesenchymal Progenitors Express Cardiac Markers but Do Not Form Contractile Cardiomyocytes
Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context,we explored the growth and differentiation potential of mesenchymal progenitors (MPs) derived in vitro from human embryonic stem cells (hESCs). Similar to MPs isolated from bone marrow,hESC derived MPs (hESC-MPs) efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1,hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5,MEF2C,HAND2 and MYOCD. Nevertheless,NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes,raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that,although hESC-MP derived cells expressed a suite of cardiac related genes,they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes,but treated cells retain a mesenchymal like phenotype. View Publication -
Sharei A et al. (FEB 2013) Proceedings of the National Academy of Sciences 110 6 2082--2087A vector-free microfluidic platform for intracellular delivery
Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations,including their reliance on exogenous materials or electrical fields,which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30–80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material,such as carbon nanotubes,proteins,and siRNA,to 11 cell types,including embryonic stem cells and immune cells. When used for the delivery of transcription factors,the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed,its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications. View Publication -
D'Assoro AB et al. (JAN 2014) Oncogene 33 5 599--610The mitotic kinase Aurora--a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ER$$(+) breast cancer cells.
In this study,we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces stabilization and accumulation of Aurora-A mitotic kinase that ultimately drives the transition from an epithelial to a highly invasive mesenchymal phenotype in estrogen receptor $$-positive (ER$$(+)) breast cancer cells. The transition from an epithelial- to a mesenchymal-like phenotype was characterized by reduced expression of ER$$,HER-2/Neu overexpression and loss of CD24 surface receptor (CD24(-/low)). Importantly,expression of key epithelial-to-mesenchymal transition (EMT) markers and upregulation of the stemness gene SOX2 was linked to acquisition of stem cell-like properties such as the ability to form mammospheres in vitro and tumor self-renewal in vivo. Moreover,aberrant Aurora-A kinase activity induced phosphorylation and nuclear translocation of SMAD5,indicating a novel interplay between Aurora-A and SMAD5 signaling pathways in the development of EMT,stemness and ultimately tumor progression. Importantly,pharmacological and molecular inhibition of Aurora-A kinase activity restored a CD24(+) epithelial phenotype that was coupled to ER$$ expression,downregulation of HER-2/Neu,inhibition of EMT and impaired self-renewal ability,resulting in the suppression of distant metastases. Taken together,our findings show for the first time the causal role of Aurora-A kinase in the activation of EMT pathway responsible for the development of distant metastases in ER$$(+) breast cancer cells. Moreover,this study has important translational implications because it highlights the mitotic kinase Aurora-A as a novel promising therapeutic target to selectively eliminate highly invasive cancer cells and improve the disease-free and overall survival of ER$$(+) breast cancer patients resistant to conventional endocrine therapy. View Publication -
Liu W et al. (FEB 2013) Biochemical and Biophysical Research Communications 431 4 767--771Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation
Induced pluripotent stem cells (iPSCs) hold great clinical potential for regenerative medicine. Much work has been done to investigate the mechanisms of their generation,focusing on the cell nucleus. However,the roles of specific organelles and in particular mitochondria in the potential mechanisms of nuclear reprogramming remain unclear. In this study,we sought to determine the role of mitochondrial metabolism transition in nuclear reprogramming. We found that the mitochondrial cristae had remodeled in iPSCs. The efficiency of iPSC generation was significantly reduced by down-regulation of mitochondrial inner membrane protein (IMMT),which regulates the morphology of mitochondrial cristae. Moreover,cells with the oxidative phosphorylation (OXPHOS) advantage had higher reprogramming efficiency than normal cells and the glycolysis intermediate lactic acid enhanced the efficiency of iPSCs generation. Our results show that the remodeling of mitochondrial cristae couples with the generation of iPSCs,suggesting mitochondrial metabolism transition plays an important role in nuclear reprogramming. View Publication -
Zhu J et al. (JAN 2013) Cell 152 3 642--654Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background,yet the landscapes of in vivo tissues remain largely uncharted. Here,we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages,lineages,and cellular environments. They also reveal global features of the epigenome,related to nuclear architecture,that also vary across cellular phenotypes. Specifically,developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture,and discuss their implications for lineage fidelity,cellular senescence,and reprogramming. ?? 2013 Elsevier Inc. View Publication -
Sutherland HJ et al. (MAY 1990) Proceedings of the National Academy of Sciences of the United States of America 87 9 3584--8Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers.
A major goal of current hematopoiesis research is to develop in vitro methods suitable for the measurement and characterization of stem cells with long-term in vivo repopulating potential. Previous studies from several centers have suggested the presence in normal human or murine marrow of a population of very primitive cells that are biologically,physically,and pharmacologically different from cells detectable by short-term colony assays and that can give rise to the latter in long-term cultures (LTCs) containing a competent stromal cell layer. In this report,we show that such cultures can be used to provide a quantitative assay for human LTC-initiating cells" based on an assessment of the number of clonogenic cells present after 5-8 weeks. Production of derivative clonogenic cells is shown to be absolutely dependent on the presence of a stromal cell feeder. When this requirement is met View Publication -
Kregel S et al. (JAN 2013) PLoS ONE 8 1 e53701Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer
Despite advances in detection and therapy,castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways,and their regulation by the Androgen Receptor (AR),has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced,castrate-resistant prostate cancers. To this end,we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate,Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative,with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1,endogenous expression of Sox2 was repressed by AR signaling,and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise,in normal prostate epithelial cells and human embryonic stem cells,increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines,and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration,and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. View Publication -
Choi SM et al. (JUN 2013) Hepatology 57 6 2458--2468Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells
UNLABELLED: Patient-specific induced pluripotent stem cells (iPSCs) represent a potential source for developing novel drug and cell therapies. Although increasing numbers of disease-specific iPSCs have been generated,there has been limited progress in iPSC-based drug screening/discovery for liver diseases,and the low gene-targeting efficiency in human iPSCs warrants further improvement. Using iPSC lines from patients with alpha-1 antitrypsin (AAT) deficiency,for which there is currently no drug or gene therapy available,we established a platform to discover new drug candidates and correct disease-causing mutation with a high efficiency. A high-throughput format screening assay,based on our hepatic differentiation protocol,was implemented to facilitate automated quantification of cellular AAT accumulation using a 96-well immunofluorescence reader. To expedite the eventual application of lead compounds to patients,we conducted drug screening utilizing our established library of clinical compounds (the Johns Hopkins Drug Library) with extensive safety profiles. Through a blind large-scale drug screening,five clinical drugs were identified to reduce AAT accumulation in diverse patient iPSC-derived hepatocyte-like cells. In addition,using the recently developed transcription activator-like effector nuclease technology,we achieved high gene-targeting efficiency in AAT-deficiency patient iPSCs with 25%-33% of the clones demonstrating simultaneous targeting at both diseased alleles. The hepatocyte-like cells derived from the gene-corrected iPSCs were functional without the mutant AAT accumulation. This highly efficient and cost-effective targeting technology will broadly benefit both basic and translational applications.backslashnbackslashnCONCLUSIONS: Our results demonstrated the feasibility of effective large-scale drug screening using an iPSC-based disease model and highly robust gene targeting in human iPSCs,both of which are critical for translating the iPSC technology into novel therapies for untreatable diseases. View Publication -
Lu B and Palacino J (MAY 2013) The FASEB Journal 27 5 1820--1829A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration
Most neurodegenerative diseases are linked to aberrant accumulation of aggregation-prone proteins. Among them,Huntington's disease (HD) is caused by an expanded polyglutamine repeat stretch in the N terminus of the mutant huntingtin protein (mHTT),which gets cleaved and aggregates in the brain. Recently established human induced pluripotent stem cell-derived HD neurons exhibit some disease-relevant phenotypes and provide tools for HD research. However,they have limitations such as genetic heterogeneity and an absence of mHTT aggregates and lack a robust neurodegeneration phenotype. In addition,the relationship between the phenotype and mHTT levels has not been elucidated. Herein,we present a human embryonic stem cell (hESC)-derived HD neuronal model expressing HTTexon1 fragments,which addresses the deficiencies enumerated above. The wild-type and HD lines are derived from an isogenic background and exhibit insoluble mHTT aggregates and neurodegeneration. We also demonstrate a quantitative relationship between neurodegeneration and soluble monomeric (but not oligomeric or aggregated) mHTT levels. Reduction of ∼10% of mHTT is sufficient to prevent toxicity,whereas ∼90% reduction of wild-type HTT is safe and well-tolerated in these cells. A known HD toxicity modifier (Rhes) showed expected rescue of neurodegeneration. Therefore,the hESC-derived neuronal models complement existing induced pluripotent stem cell-derived neuronal models and provide valuable tools for HD research.—Lu,B.,Palacino,J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. View Publication -
Onuma Y et al. (FEB 2013) Biochemical and biophysical research communications 431 3 524--529RBC2LCN, a new probe for live cell imaging of human pluripotent stem cells
Cell surface biomarkers have been applied to discriminate pluripotent human embryonic stem cells and induced pluripotent stem cells from differentiated cells. Here,we demonstrate that a recombinant lectin probe,rBC2LCN,a new tool for fluorescence-based imaging and flow cytometry analysis of pluripotent stem cells,is an alternative to conventional pluripotent maker antibodies. Live or fixed colonies of both human embryonic stem cells and induced pluripotent stem cells were visualized in culture medium containing fluorescent dye-labeled rBC2LCN. Fluorescent dye-labeled rBC2LCN was also successfully used to separate live pluripotent stem cells from a mixed cell population by flow cytometry. textcopyright 2013 Elsevier Inc. View Publication -
Lee JH et al. (MAR 2013) Oncology reports 29 3 917--924The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1$$ expression.
The importance of anticancer stem cell research for breast cancer lies in the possibility of providing new approaches for an improved understanding of anticancer activity and cancer treatment. In this study,we demonstrated that the preclinical therapeutic efficacy of combining the multikinase inhibitor sorafenib with radiation was more effective in hypoxia-exposed breast cancer stem cells. We assessed cell viability and Annexin V to evaluate the combined effect of sorafenib and radiation following exposure to hypoxia. Our results showed that the synergistic cytotoxicity increased tumor cell apoptosis significantly and reduced cell proliferation in MDA-MB-231 and MCF-7 cells under hypoxic conditions compared to sorafenib or radiation alone in vitro. Additionally,the combined treatment induced G2/M cell cycle arrest. Notably,the combination of sorafenib and radiation eliminated CD44+CD24-/low cells preferentially,which highly expressed hypoxia-inducible factor (HIF)-1$$ and effectively inhibited primary and secondary mammosphere formation in MDA-MB-231 cells. A combined effect on MDA-MB‑231 cells in response to hypoxia was shown by inhibiting angiogenesis and metastasis by suppression of HIF-1$$ and matrix metalloproteinase-2 (MMP-2). Collectively,these results indicate that the efficacy of sorafenib combined with radiation for treating human breast cancer cells is synergistic and suggest a new therapeutic approach to prevent breast cancer progression by eliminating breast cancer stem cells. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号