Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells.
In recent years,studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this,cancer is sustained by highly positioned,chemoresistant cells with extensive capacity of self renewal,which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling,we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1),the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study,we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker,most of them positive also for the stemness marker ALDH1A1,thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore,SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.
View Publication
Goh PA et al. (NOV 2013)
PLoS ONE 8 11 e81622
A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells
A systematic evaluation of three different methods for generating induced pluripotent stem (iPS) cells was performed using the same set of parental cells in our quest to develop a feeder independent and xeno-free method for somatic cell reprogramming that could be transferred into a GMP environment. When using the BJ fibroblast cell line,the highest reprogramming efficiency (1.89% of starting cells) was observed with the mRNA based method which was almost 20 fold higher than that observed with the retrovirus (0.2%) and episomal plasmid (0.10%) methods. Standard characterisation tests did not reveal any differences in an array of pluripotency markers between the iPS lines derived using the various methods. However,when the same methods were used to reprogram three different primary fibroblasts lines,two derived from patients with rapid onset parkinsonism dystonia and one from an elderly healthy volunteer,we consistently observed higher reprogramming efficiencies with the episomal plasmid method,which was 4 fold higher when compared to the retroviral method and over 50 fold higher than the mRNA method. Additionally,with the plasmid reprogramming protocol,recombinant vitronectin and synthemax® could be used together with commercially available,fully defined,xeno-free essential 8 medium without significantly impacting the reprogramming efficiency. To demonstrate the robustness of this protocol,we reprogrammed a further 2 primary patient cell lines,one with retinosa pigmentosa and the other with Parkinsons disease. We believe that we have optimised a simple and reproducible method which could be used as a starting point for developing GMP protocols,a prerequisite for generating clinically relevant patient specific iPS cells.
View Publication
McIntyre BAS et al. (JAN 2014)
Stem cells translational medicine 3 1 7--17
Expansive generation of functional airway epithelium from human embryonic stem cells.
Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however,this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper,we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach,guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support,followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types,resulting in functional characteristics such as secretion of pulmonary surfactant,ciliation,polarization,and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors,allowing in vivo assessment,which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway,where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases.
View Publication
Deng Y et al. (JAN 2014)
Carbohydrate Polymers 101 1 36--39
Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture
Realization of the full potential of human induced pluripotent stem cells (hiPSCs) in clinical applications requires development of well-defined conditions for their growth and differentiation. A novel fully defined polyvinyl alcohol/hyaluronan (PVA/HA) polysaccharide nanofiber was developed for hiPSCs culture in commercially available xeno-free,chemically defined medium. Vitronectin peptide (VP) was immobilized to PVA/HA nanofibers through NHS/EDC chemistry. The hiPSCs successfully grew and proliferated on the VP-decorated PVA/HA nanofibers,similar to those on MatrigelTM. Such well-defined,xeno-free and safe nanofiber substrate that supports culture of hiPSCs will not only help to accelerate the translational perspectives of hiPSCs,but also provide a platform to investigate the cell-nanofiber interaction mechanisms that regulate stem cell proliferation and differentiation. ?? 2013 Elsevier Ltd. All rights reserved.
View Publication
Zhu S et al. ( 2014)
Cell research 24 1 126--129
Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells.
Karelina K et al. (MAR 2014)
Experimental neurology 253 72--81
Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus.
Ischemia-induced progenitor cell proliferation is a prominent example of the adult mammalian brain's ability to regenerate injured tissue resulting from pathophysiological processes. In order to better understand and exploit the cell signaling mechanisms that regulate ischemia-induced proliferation,we examined the role of the p42/44 mitogen-activated protein kinase (MAPK) cascade effector ribosomal S6 kinase (RSK) in this process. Here,using the endothelin-1 ischemia model in wild type mice,we show that the activated form of RSK is expressed in the progenitor cells of the subgranular zone (SGZ) after intrahippocampal cerebral ischemia. Further,RSK inhibition significantly reduces ischemia-induced SGZ progenitor cell proliferation. Using the neurosphere assay,we also show that both SGZ- and subventricular zone (SVZ)-derived adult neural stem cells (NSC) exhibit a significant reduction in proliferation in the presence of RSK and MAPK inhibitors. Taken together,these data reveal RSK as a regulator of ischemia-induced progenitor cell proliferation,and as such,suggest potential therapeutic value may be gained by specifically targeting the regulation of RSK in the progenitor cell population of the SGZ.
View Publication
Avery S et al. (NOV 2013)
Stem Cell Reports 1 5 379--386
BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures
Summary Human embryonic stem cells (hESCs) regularly acquire nonrandom genomic aberrations during culture,raising concerns about their safe therapeutic application. The International Stem Cell Initiative identified a copy number variant (CNV) amplification of chromosome 20q11.21 in 25% of hESC lines displaying a normal karyotype. By comparing four cell lines paired for the presence or absence of this CNV,we show that those containing this amplicon have higher population doubling rates,attributable to enhanced cell survival through resistance to apoptosis. Of the three genes encoded within the minimal amplicon and expressed in hESCs,only overexpression of BCL2L1 (BCL-XL isoform) provides control cells with growth characteristics similar to those of CNV-containing cells,whereas inhibition of BCL-XL suppresses the growth advantage of CNV cells,establishing BCL2L1 as a driver mutation. Amplification of the 20q11.21 region is also detectable in human embryonal carcinoma cell lines and some teratocarcinomas,linking this mutation with malignant transformation.
View Publication
Au KF et al. (DEC 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 50 E4821----30
Characterization of the human ESC transcriptome by hybrid sequencing.
Although transcriptional and posttranscriptional events are detected in RNA-Seq data from second-generation sequencing,full-length mRNA isoforms are not captured. On the other hand,third-generation sequencing,which yields much longer reads,has current limitations of lower raw accuracy and throughput. Here,we combine second-generation sequencing and third-generation sequencing with a custom-designed method for isoform identification and quantification to generate a high-confidence isoform dataset for human embryonic stem cells (hESCs). We report 8,084 RefSeq-annotated isoforms detected as full-length and an additional 5,459 isoforms predicted through statistical inference. Over one-third of these are novel isoforms,including 273 RNAs from gene loci that have not previously been identified. Further characterization of the novel loci indicates that a subset is expressed in pluripotent cells but not in diverse fetal and adult tissues; moreover,their reduced expression perturbs the network of pluripotency-associated genes. Results suggest that gene identification,even in well-characterized human cell lines and tissues,is likely far from complete.
View Publication
Kundu N et al. (JAN 2014)
Breast cancer research and treatment 143 1 19--31
Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties.
The cyclooxygenase pathway is strongly implicated in breast cancer progression but the role of this pathway in the biology of breast cancer stem/progenitor cells has not been defined. Recent attention has focused on targeting the cyclooxygenase 2 (COX-2) pathway downstream of the COX-2 enzyme by blocking the activities of individual prostaglandin E (EP) receptors. Prostaglandin E receptor 4 (EP4) is widely expressed in primary invasive ductal carcinomas of the breast and antagonizing this receptor with small molecule inhibitors or shRNA directed to EP4 inhibits metastatic potential in both syngeneic and xenograft models. Breast cancer stem/progenitor cells are defined as a subpopulation of cells that drive tumor growth,metastasis,treatment resistance,and relapse. Mammosphere-forming breast cancer cells of human (MDA-MB-231,SKBR3) or murine (66.1,410.4) origin of basal-type,Her-2 phenotype and/or with heightened metastatic capacity upregulate expression of both EP4 and COX-2 and are more tumorigenic compared to the bulk population. In contrast,luminal-type or non-metastatic counterparts (MCF7,410,67) do not increase COX-2 and EP4 expression in mammosphere culture. Treatment of mammosphere-forming cells with EP4 inhibitors (RQ-15986,AH23848,Frondoside A) or EP4 gene silencing,but not with a COX inhibitor (Indomethacin) reduces both mammosphere-forming capacity and the expression of phenotypic markers (CD44(hi)/CD24(low),aldehyde dehydrogenase) of breast cancer stem cells. Finally,an orally delivered EP4 antagonist (RQ-08) reduces the tumor-initiating capacity and markedly inhibits both the size of tumors arising from transplantation of mammosphere-forming cells and phenotypic markers of stem cells in vivo. These studies support the continued investigation of EP4 as a potential therapeutic target and provide new insight regarding the role of EP4 in supporting a breast cancer stem cell/tumor-initiating phenotype.
View Publication
Volonté et al. (JAN 2014)
Journal of immunology (Baltimore,Md. : 1950) 192 1 523--532
Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4.
Cancer-initiating cells (CICs) that are responsible for tumor initiation,propagation,and resistance to standard therapies have been isolated from human solid tumors,including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display tumor-initiating/stemness" properties
View Publication
Hanke M et al. (FEB 2014)
Biomaterials 35 5 1411--1419
Differences between healthy hematopoietic progenitors and leukemia cells with respect to CD44 mediated rolling versus adherence behavior on hyaluronic acid coated surfaces.
We previously demonstrated that leukemia cell lines expressing CD44 and hematopoietic progenitor cells (HPC) from umbilical cord blood (CB) showed rolling on hyaluronic acid (HA)-coated surfaces under physiological shear stress. In the present study,we quantitatively assessed the interaction of HPC derived from CB,mobilized peripheral blood (mPB) and bone marrow (BM) from healthy donors,as well as primary leukemia blasts from PB and BM of patients with acute myeloid leukemia (AML) with HA. We have demonstrated that HPC derived from healthy donors showed relative homogeneous rolling and adhesion to HA. In contrast,highly diverse behavioral patterns were found for leukemia blasts under identical conditions. The monoclonal CD44 antibody (clone BU52) abrogated the shear stress-induced rolling of HPC and leukemia blasts,confirming the significance of CD44 in this context. On the other hand,the immobile adhesion of leukemia blasts to the HA-coated surface was,in some cases,not or incompletely inhibited by BU52. The latter property was associated with non-responsiveness to induction chemotherapy and subsequently poor clinical outcome.
View Publication
Ma Z et al. (FEB 2014)
Biomaterials 35 5 1367--1377
Three-dimensional filamentous human diseased cardiac tissue model
A human invitro cardiac tissue model would be a significant advancement for understanding,studying,and developing new strategies for treating cardiac arrhythmias and related cardiovascular diseases. We developed an invitro model of three-dimensional (3D) human cardiac tissue by populating synthetic filamentous matrices with cardiomyocytes derived from healthy wild-type volunteer (WT) and patient-specific long QT syndrome type 3 (LQT3) induced pluripotent stem cells (iPS-CMs) to mimic the condensed and aligned human ventricular myocardium. Using such a highly controllable cardiac model,we studied the contractility malfunctions associated with the electrophysiological consequences of LQT3 and their response to a panel of drugs. By varying the stiffness of filamentous matrices,LQT3 iPS-CMs exhibited different level of contractility abnormality and susceptibility to drug-induced cardiotoxicity. textcopyright 2013 Elsevier Ltd.
View Publication