技术资料
-
Bershteyn M et al. (MAR 2014) Nature 507 7490 99--103Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells.
Ring chromosomes are structural aberrations commonly associated with birth defects,mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome,and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes,no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division,ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations,enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of /`chromosome therapy/' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition,our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control,which is of critical relevance to human development and disease. View Publication -
Lu HF et al. (MAR 2014) Biomaterials 35 9 2816--2826A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However,standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium,imposing a significant obstacle to clinical translation. Here,we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions,we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently,transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal,normal karyotype and pluripotency,as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly,we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications. textcopyright 2013 Elsevier Ltd. View Publication -
Sokolov M and Neumann R ( 2014) International Journal of Molecular Sciences 15 1 588--604Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells
There is a great deal of uncertainty on how low (≤ 0.1 Gy) doses of ionizing radiation (IR) affect human cells,partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation,natural background radiation,and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types,we established a novel,human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and,as a reference,relatively high dose of 1 Gy of IR. Here,we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes,including CDKN1A,GADD45A,etc. at 2 and 16 h post-IR,representing early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures." View Publication -
Sproul Aa et al. (JAN 2014) Acta Neuropathologica Communications 2 1 4Generation of iPSC lines from archived non-cryoprotected biobanked dura mater
Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation,the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells,and thus was not frozen in the presence of cryoprotectants such as DMSO. PMID: 24398250 View Publication -
Zhang L et al. (MAR 2014) Cell cycle (Georgetown,Tex.) 13 5 762--71Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium.
Induced pluripotent stem cells (iPS) can differentiate into cardiomyocytes (CM) and represent a promising form of cellular therapy for heart regeneration. However,residual undifferentiated iPS derivates (iPSD),which are not fully eliminated by cell differentiation or purification protocols,may form tumors after transplantation,thus compromising therapeutic application. Inhibition of stearoyl-coA desaturase (SCD) has recently been reported to eliminate undifferentiated human embryonic stem cells,which share many features with iPSD. Here,we tested the effects of PluriSin1,a small-molecule inhibitor of SCD,on iPS-derived CM. We found that plurisin1 treatment significantly decreased the mRNA and protein level of Nanog,a marker for both cell pluripotency and tumor progression; importantly,we provide evidence that PluriSin1 treatment at 20 µM for 1 day significantly induces the apoptosis of Nanog-positive iPSD. In addition,PluriSin1 treatment at 20 µM for 4 days diminished Nanog-positive stem cells in cultured iPSD while not increasing apoptosis of iPS-derived CM. To investigate whether PluriSin1 treatment prevents tumorigenicity of iPSD after cell transplantation,we intramyocardially injected PluriSin1- or DMSO-treated iPSD in a mouse model of myocardial infarction (MI). DMSO-treated iPSD readily formed Nanog-expressing tumors 2 weeks after injection,which was prevented by treatment with PluriSin1. Moreover,treatment with PluriSin1 did not change the expression of cTnI,α-MHC,or MLC-2v,markers of cardiac differentiation (Ptextgreater0.05,n = 4). Importantly,pluriSin1-treated iPS-derived CM exhibited the ability to engraft and survive in the infarcted myocardium. We conclude that inhibition of SCD holds the potential to enhance the safety of therapeutic application of iPS cells for heart regeneration. View Publication -
Long T et al. (MAR 2014) Biomaterials 35 9 2752--9The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.
Structural bone allografts are widely used in the clinic to treat critical sized bone defects,despite lacking the osteoinductive characteristics of live autografts. To address this,we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets,which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates,as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets,suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo,allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography,3D microCT,histology,and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation,as well as graft-host osteointegration. Moreover,a large periosteal callus was observed spanning the allografts with MSC sheets,which partially mimics live autograft healing. Finally,biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together,MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair,demonstrating the feasibility of this tissue engineering solution for massive allograft healing. View Publication -
Srinivasakumar N et al. (DEC 2013) PeerJ 1 e224Gammaretroviral vector encoding a fluorescent marker to facilitate detection of reprogrammed human fibroblasts during iPSC generation.
Induced pluripotent stem cells (iPSCs) are becoming mainstream tools to study mechanisms of development and disease. They have a broad range of applications in understanding disease processes,in vitro testing of novel therapies,and potential utility in regenerative medicine. Although the techniques for generating iPSCs are becoming more straightforward,scientists can expend considerable resources and time to establish this technology. A major hurdle is the accurate determination of valid iPSC-like colonies that can be selected for further cloning and characterization. In this study,we describe the use of a gammaretroviral vector encoding a fluorescent marker,mRFP1,to not only monitor the efficiency of initial transduction but also to identify putative iPSC colonies through silencing of mRFP1 gene as a consequence of successful reprogramming. View Publication -
Zhang M et al. (APR 2014) Cancer 120 7 992--1001Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma.
BACKGROUND Human papillomavirus 16 (HPV16) is a major risk factor for the development of head and neck squamous cell carcinoma (HNSCC),particularly the development of oropharyngeal squamous cell carcinoma (OPSCC). Cancer stem cells (CSCs) are resistant to conventional therapies,and it is postulated that they are responsible for disease recurrence and/or progression. Because the prognoses of patients with HPV16-positive and HPV-negative HNSCC are distinct,the authors sought to determine whether differences in the number of CSCs could account for this clinical observation. METHODS CSC populations in HPV16-positive and HPV-negative HNSCC were assessed using a proprietary assay based on expression of the enzyme aldehyde dehydrogenase (ALDH),an in vitro tumorsphere formation assay,and an in vivo limiting cell dilution in nonobese diabetic/severe combined immunodeficiency mice. A high-density tissue microarray was stained with ALDH1,a CSC marker,to determine the association between CSCs and HPV16-positive/HPV-negative OPSCC. RESULTS HPV16-positive HNSCC had a greater intrinsic CSC pool than HPV-negative HNSCC. Inactivation of p53 has been identified as a major mechanism for the elevated CSC population in HPV16-positive HNSCC. In vivo limiting cell dilution experiments using tumors from patients with HPV16-positive and HPV-negative OPSCC indicated that the CSC frequency was 62.5-fold greater in an HPV16-positive OPSCC tumor than in an HPV-negative OPSCC tumor. Primary tumors from patients with HPV16-positive OPSCC were associated with elevated tumor ALDH1 staining,further extending the association between HPV16 and CSCs. CONCLUSIONS The current data and the clinical observation that patients with HPV16-positive HNSCC respond more favorably to current treatment paradigms than patients with HPV-negative HNSCC support the suggestion that CSC phenotype is not homogeneous. Therefore,the reliance on the CSC number may be insufficient to accurately assess the potential of a particular tumor for disease recurrence and/or progression. View Publication -
Havlicek S et al. (MAY 2014) Human Molecular Genetics 23 10 2527--2541Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 (SPG4),encoding spastin,are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons,we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684CtextgreaterT nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased,which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin,these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein,p60 katanin,may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length,branching,numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore,our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients. View Publication -
Tang MLF et al. ( 2014) The European Journal of Immunology 44 4 1108--1118The DNA damage response induces antigen presenting cell-like functions in fibroblasts
The DNA damage response (DDR) alerts the immune system to the danger posed by DNA damage through the induction of damage-associated molecular pattern molecules,chemokines,and ligands for activating immune receptors such as lymphocyte function-associated antigen 1 (LFA-1),NKG2D,and DNAX accessory molecule 1 (DNAM-1). Here we provide evidence that OVA(257-264) -pulsed fibroblasts gain the ability to activate naïve OT-I CD8(+) T cells in response to DNA damage. The ability of fibroblasts to activate OT-I CD8(+) T cells depended on the upregulation of ICAM-1 on fibroblasts and DNAM-1 expression of CD8(+) T cells. OVA(257-264) -pulsed fibroblasts were able to induce a protective T-cell response against B16-OVA cells in a DDR-dependent manner. Hence,the DDR may alert the immune system to the presence of potentially dangerous cells by upregulating the expression of ligands that can induce the activation of innate and adaptive immune cells. View Publication -
Borchin B et al. (DEC 2013) Stem Cell Reports 1 6 620--631Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs,the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here,we describe a method based on the use of a small-molecule GSK3?? inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3?? inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover,we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free,efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies,in vitro screenings,and disease modeling. ?? 2013 The Authors. View Publication -
Rustighi A et al. (JAN 2014) EMBO molecular medicine 6 1 99--119Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast.
Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse,and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically,following interaction with Pin1,Notch1 and Notch4,key regulators of cell fate,escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7$$. Functionally,we show that Fbxw7$$ acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity,but the establishment of a Notch/Pin1 active circuitry opposes this effect,thus promoting breast CSCs self-renewal,tumor growth and metastasis in vivo. In human breast cancers,despite Fbxw7$$ expression,high levels of Pin1 sustain Notch signaling,which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes,through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号