技术资料
-
文献(Sep 2024) eBioMedicine 108 3Global and single-cell proteomics view of the co-evolution between neural progenitors and breast cancer cells in a co-culture model
SummaryBackgroundPresence of nerves in tumours,by axonogenesis and neurogenesis,is gaining increased attention for its impact on cancer initiation and development,and the new field of cancer neuroscience is emerging. A recent study in prostate cancer suggested that the tumour microenvironment may influence cancer progression by recruitment of Doublecortin (DCX)-expressing neural progenitor cells (NPCs). However,the presence of such cells in human breast tumours has not been comprehensively explored.MethodsHere,we investigate the presence of DCX-expressing cells in breast cancer stromal tissue from patients using Imaging Mass Cytometry. Single-cell analysis of 372,468 cells across histopathological images of 107 breast cancers enabled spatial resolution of neural elements in the stromal compartment in correlation with clinicopathological features of these tumours. In parallel,we established a 3D in vitro model mimicking breast cancer neural progenitor-innervation and examined the two cell types as they co-evolved in co-culture by using mass spectrometry-based global proteomics.FindingsStromal presence of DCX + cells is associated with tumours of higher histological grade,a basal-like phenotype,and shorter patient survival in tumour tissue from patients with breast cancer. Global proteomics analysis revealed significant changes in the proteomic landscape of both breast cancer cells and neural progenitors in co-culture.InterpretationThese results support that neural involvement plays an active role in breast cancer and warrants further studies on the relevance of nerve elements for tumour progression.FundingThis work was supported by the 10.13039/501100005416Research Council of Norway through its Centre of Excellence funding scheme,project number 223250 (to L.A.A),the 10.13039/100008730Norwegian Cancer Society (to L.A.A. and H.V.),the Regional Health Trust Western Norway (Helse Vest) (to L.A.A.),the 10.13039/501100008728Meltzer Research Fund (to H.V.) and the 10.13039/100000002National Institutes of Health (NIH)/10.13039/100000057NIGMS grant R01 GM132129 (to J.A.P.). View Publication -
文献(Jun 2025) APL Bioengineering 9 2Development of large-scale gastruloid array to identify aberrant developmental phenotypes
Adherent two-dimensional human gastruloids have provided insights into early human embryogenesis. Even though the model system is highly reproducible,no available automated technology can screen and sort large numbers of these near-millimeter-sized complex structures for large-scale assays. Here,we developed a microraft array-based technology to perform image-based assays of large numbers of fixed or living gastruloids and sort individual gastruloids for downstream assays,such as gene expression analysis. Arrays of 529 indexed magnetic microrafts each (789?µm side length) possessing flat surfaces were photopatterned with a central circular region (500?µm diameter) of extracellular matrix with an accuracy of 93?±?1% to form a single gastruloid on each raft. An image analysis pipeline extracted features from transmitted light and fluorescence images of the gastruloids. The large microrafts were released and collected by an automated sorting system with efficiencies of 98?±?4% and 99?±?2%,respectively. The microraft array platform was used to assay individual euploid and aneuploid (possessing abnormal numbers of chromosomes) gastruloids with clear phenotypic differences. Aneuploid gastruloids displayed significantly less DNA/area than euploid gastruloids. However,even gastruloids with the same condition displayed significant heterogeneity. Both noggin (NOG) and keratin 7 (KRT7),two genes involved in spatial patterning within gastruloids,were upregulated in aneuploid relative to that in the euploid gastruloids. Moreover,relative NOG and KRT7 expressions were negatively correlated with DNA/area. The microraft arrays will empower novel screens of single gastruloids for a better understanding of key mechanisms underlying phenotypic differences between gastruloids. View Publication -
文献(Sep 2024) Stem Cell Research & Therapy 15 3Influence of mesenchymal and biophysical components on distal lung organoid differentiation
BackgroundChronic lung disease of prematurity,called bronchopulmonary dysplasia (BPD),lacks effective therapies,stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD,but current protocols do not accurately replicate the distal niche environment of the native lung. Herein,we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation.MethodsHuman PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry,immunofluorescence,and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6),E-cadherin (CDH1),NK2 Homeobox 1 (NKX2-1),HT2-280,surfactant proteins B (SFTPB) and C (SFTPC).ResultsWe observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally,we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids,mimicking in situ fetal respiratory movements,increased AEC2 differentiation without affecting proximal epithelial differentiation.ConclusionOur data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-03890-2. View Publication -
文献(Dec 2024) Bio-protocol 14 24CRISPR/Cas9-Based Protocol for Precise Genome Editing in Induced Pluripotent Stem Cells
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However,the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site. P53 activation as a result of traditional CRISPR editing can lead to apoptosis,potentially worsening cell health or even resulting in cell death. Mitigating this apoptotic response can enhance cell survival post-CRISPR editing,which will ultimately increase editing efficiency. In our study,we observed that combining p53 inhibition with pro-survival small molecules yields a homologous recombination rate of over 90% when using CRISPR in human iPSCs. This protocol significantly streamlines the editing process and reduces the time and resources necessary for creating isogenic lines. Key features • The combination of p53 inhibition and pro-survival small molecules promotes cell survival and increases the efficiency of genome editing.• Genome editing can be completed in as little as 8 weeks for iPSCs,significantly reducing the total time required.• Achieves a homologous recombination rate of over 90% in human iPSCs. View Publication -
文献(May 2024) Angiogenesis 27 3Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however,they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here,we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further,the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus,we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover,owing to their phenotypic stability,cardiac specificity,and high angiogenic potential,the cells described within would also be well suited for cardiac tissue engineering applications.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10456-024-09929-5. View Publication -
文献(Mar 2024) Nature Communications 15Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia
Microglia play a pivotal role in neurodegenerative disease pathogenesis,but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia,we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs),termed iMGs,harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism,autophagy dysregulation and deficient phagocytosis,a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P,a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways,as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders. Mutations in profilin 1 (PFN1),which modulates actin dynamics,are associated with ALS. Here the authors show that expression of ALS-PFN1 is sufficient to induce deficits in human microglia-like cells,including impaired phagocytosis and lipid metabolism,and that gain-of-function interactions between ALS-PFN1 and PI3P may underlie these deficits. View Publication -
文献(Mar 2025) Molecular Brain 18 3Klotho overexpression protects human cortical neurons from ?-amyloid induced neuronal toxicity
Klotho,a well-known aging suppressor protein,has been implicated in neuroprotection and the regulation of neuronal senescence. While previous studies have demonstrated its anti-aging properties in human brain organoids,its potential to mitigate neurodegenerative processes triggered by ?-amyloid remains underexplored. In this study,we utilised human induced pluripotent stem cells (iPSCs) engineered with a doxycycline-inducible system to overexpress KLOTHO and generated 2D cortical neuron cultures from these cells. These neurons were next exposed to pre-aggregated ?-amyloid 1–42 oligomers to model the neurotoxicity associated with Alzheimer’s disease. Our data reveal that upregulation of KLOTHO significantly reduced ?-amyloid-induced neuronal degeneration and apoptosis,as evidenced by decreased cleaved caspase-3 expression and preservation of axonal integrity. Additionally,KLOTHO overexpression prevented the loss of dendritic branching and mitigated reductions in axonal diameter,hallmark features of neurodegenerative pathology. These results highlight Klotho’s protective role against ?-amyloid-induced neurotoxicity in human cortical neurons and suggest that its age-related decline may contribute to neurodegenerative diseases such as Alzheimer’s disease. Our findings underscore the therapeutic potential of Klotho-based interventions in mitigating age-associated neurodegenerative processes.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13041-025-01199-6. View Publication -
文献(Feb 2024) Scientific Reports 14Characterization of enhancer activity in early human neurodevelopment using Massively Parallel Reporter Assay (MPRA) and forebrain organoids
Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment,and confirming their activity through orthogonal functional assays is crucial. Here,we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers,with most showing temporal-specific activity,suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community. View Publication -
文献(Feb 2024) Cell Death & Disease 15 2CHCHD2 up-regulation in Huntington disease mediates a compensatory protective response against oxidative stress
Huntington disease (HD) is a neurodegenerative disease caused by the abnormal expansion of a polyglutamine tract resulting from a mutation in the HTT gene. Oxidative stress has been identified as a significant contributing factor to the development of HD and other neurodegenerative diseases,and targeting anti-oxidative stress has emerged as a potential therapeutic approach. CHCHD2 is a mitochondria-related protein involved in regulating cell migration,anti-oxidative stress,and anti-apoptosis. Although CHCHD2 is highly expressed in HD cells,its specific role in the pathogenesis of HD remains uncertain. We postulate that the up-regulation of CHCHD2 in HD models represents a compensatory protective response against mitochondrial dysfunction and oxidative stress associated with HD. To investigate this hypothesis,we employed HD mouse striatal cells and human induced pluripotent stem cells (hiPSCs) as models to examine the effects of CHCHD2 overexpression (CHCHD2-OE) or knockdown (CHCHD2-KD) on the HD phenotype. Our findings demonstrate that CHCHD2 is crucial for maintaining cell survival in both HD mouse striatal cells and hiPSCs-derived neurons. Our study demonstrates that CHCHD2 up-regulation in HD serves as a compensatory protective response against oxidative stress,suggesting a potential anti-oxidative strategy for the treatment of HD. View Publication -
文献(Mar 2024) Nature 628 8006Mitochondrial complex I activity in microglia sustains neuroinflammation
Sustained smouldering,or low-grade activation,of myeloid cells is a common hallmark of several chronic neurological diseases,including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However,how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here,using a multiomics approach,we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically,blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3. Blocking mitochondrial complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in vivo in an animal disease model. View Publication -
文献(Jun 2024) Frontiers in Cell and Developmental Biology 12Optimizing Nodal, Wnt and BMP signaling pathways for robust and efficient differentiation of human induced pluripotent stem cells to intermediate mesoderm cells
Several differentiation protocols have enabled the generation of intermediate mesoderm (IM)-derived cells from human pluripotent stem cells (hPSC). However,the substantial variability between existing protocols for generating IM cells compromises their efficiency,reproducibility,and overall success,potentially hindering the utility of urogenital system organoids. Here,we examined the role of high levels of Nodal signaling and BMP activity,as well as WNT signaling in the specification of IM cells derived from a UCSD167i-99-1 human induced pluripotent stem cells (hiPSC) line. We demonstrate that precise modulation of WNT and BMP signaling significantly enhances IM differentiation efficiency. Treatment of hPSC with 3 ?M CHIR99021 induced TBXT+/MIXL1+ mesoderm progenitor (MP) cells after 48 h of differentiation. Further treatment with a combination of 3 ?M CHIR99021 and 4 ng/mL BMP4 resulted in the generation of OSR1+/GATA3+/PAX2+ IM cells within a subsequent 48 h period. Molecular characterization of differentiated cells was confirmed through immunofluorescence staining and RT-qPCR. Hence,this study establishes a consistent and reproducible protocol for differentiating hiPSC into IM cells that faithfully recapitulates the molecular signatures of IM development. This protocol holds promise for improving the success of protocols designed to generate urogenital system organoids in vitro,with potential applications in regenerative medicine,drug discovery,and disease modeling. View Publication -
文献(Oct 2024) Cell Death & Disease 15 10Deciphering the impact of PROM1 alternative splicing on human photoreceptor development and maturation
Alternative splicing (AS) is a crucial mechanism contributing to proteomic diversity,which is highly regulated in tissue- and development-specific patterns. Retinal tissue exhibits one of the highest levels of AS. In particular,photoreceptors have a distinctive AS pattern involving the inclusion of microexons not found in other cell types. PROM1 whose encoded protein Prominin-1 is located in photoreceptor outer segments (OSs),undergoes exon 4 inclusion from the 12th post-conception week of human development through adulthood. Exon 4 skipping in PROM1 is associated with late-onset mild maculopathy,however its role in photoreceptor maturation and function is unknown. In this study retinal organoids,a valuable model system,were employed in combination with phosphorodiamidate morpholino oligos (PMOs) to assess the role of exon 4 AS in the development of human retina. Retinal organoids were treated with the PMOs for four weeks after which RT-PCR,western blotting and immunofluorescence analysis were performed to assess exon 4 exclusion and its impact on photoreceptors. The transcriptome of treated ROs was studied by bulk RNA-Seq. Our data demonstrate that 55% skipping of PROM1 exon 4 resulted in decreased Prominin-1 expression by 40%,abnormal accumulation of cones in the basal side of the retinal organoids as well as detectable cone photoreceptor cilium defects. Transcriptomic and western blot analyses revealed decreased expression of cone,inner segment and connecting cilium basal body markers,increased expression of genes associated with stress response and the ubiquitin-proteasome system,and downregulation of autophagy. Importantly,the use of retinal organoids provides a valuable platform to study AS and unravel disease mechanisms in a more physiologically relevant context,opening avenues for further research and potential therapeutic interventions. Together our data indicate that cones may be more sensitive to PROM1 exon 4 skipping and/or reduced Prominin-1 expression,corroborating the pathogenesis of late-onset mild maculopathy. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号