技术资料
-
文献(Mar 2025) Experimental Hematology & Oncology 14 5TLR7/8 signaling activation enhances the potency of human pluripotent stem cell-derived eosinophils in cancer immunotherapy for solid tumors
BackgroundEfficient tumor T-cell infiltration is crucial for the effectiveness of T-cell-based therapies against solid tumors. Eosinophils play crucial roles in recruiting T cells in solid tumors. Our group has previously generated induced eosinophils (iEOs) from human pluripotent stem cells and exhibited synergistic efficacy with CAR-T cells in solid tumor inhibition. However,administrated eosinophils might influx into inflammatory lungs,posing a potential safety risk. Mitigating the safety concern and enhancing efficacy is a promising development direction for further application of eosinophils.MethodsWe developed a new approach to generate eosinophils with enhanced potency from human chemically reprogrammed induced pluripotent stem cells (hCiPSCs) with the Toll-like receptor (TLR) 7/8 signaling agonist R848.ResultsR848-activated iEOs (R-iEOs) showed significantly decreased influx to the inflamed lungs,indicating a lower risk of causing airway disorders. Furthermore,these R-iEOs had enhanced anti-tumor functions,preferably accumulated at tumor sites,and further increased T-cell infiltration. The combination of R-iEOs and CAR-T cells suppressed tumor growth in mice. Moreover,the chemo-trafficking signaling increased in R-iEOs,which may contribute to the decreased lung influx of R-iEOs and the increased tumor recruitment of T cells.ConclusionOur study provides a novel approach to alleviate the potential safety concerns associated with eosinophils while increasing T-cell infiltration in solid tumors. This finding offers a prospective strategy for incorporating eosinophils to improve CAR-T-cell immunotherapy for solid tumors in the future.Graphical Abstract Supplementary InformationThe online version contains supplementary material available at 10.1186/s40164-025-00613-y. View Publication -
文献(Sep 2024) Heliyon 10 18Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However,we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis,particularly in the late stage,where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus,we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge,the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this,we generated inducible TRIB3 overexpression hESCs,named TRIB3tet-on OE H9,based on a Tet-On system. Then,we analyzed hemoglobin expression,condensed chromosomes,organelle clearance,and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry,enhanced hemoglobin and related protein expression in Western blot,decreased nuclear area size,promoted enucleation rate,decreased lysosome and mitochondria number,more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 ?g/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore,our study delineates the role of TRIB3 in terminal erythropoiesis,and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin. Highlights•TRIB3 boosts erythroid cell maturation.•Key insights into erythropoiesis from hESCs.•Enhanced ubiquitin-proteasome system and downstream mitophagy in erythroid differentiation. View Publication -
文献(Mar 2024) Archives of Toxicology 98 6Effects of the nerve agent VX on hiPSC-derived motor neurons
Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date,the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation,motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity,MN were initially exposed once to 400 µM,600 µM,800 µM,or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS,XTT,IncuCyte,qRT-PCR,and Western Blot. For the first time,VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this,MN morphology and neurite network were altered time and concentration-dependently. Thus,MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future. View Publication -
文献(Apr 2025) PLOS One 20 4A human iPSC-derived midbrain neural stem cell model of prenatal opioid exposure and withdrawal: A proof of concept study
A growing body of clinical literature has described neurodevelopmental delays in infants with chronic prenatal opioid exposure and withdrawal. Despite this,the mechanism of how opioids impact the developing brain remains unknown. Here,we developed an in vitro model of prenatal morphine exposure and withdrawal using healthy human induced pluripotent stem cell (iPSC)-derived midbrain neural progenitors in monolayer. To optimize our model,we identified that a longer neural induction and regional patterning period increases expression of canonical opioid receptors mu and kappa in midbrain neural progenitors compared to a shorter protocol (OPRM1,two-tailed t-test,p =? 0.004; OPRK1,p =? 0.0003). Next,we showed that the midbrain neural progenitors derived from a longer iPSC neural induction also have scant toll-like receptor 4 (TLR4) expression,a key player in neonatal opioid withdrawal syndrome pathophysiology. During morphine withdrawal,differentiating neural progenitors experience cyclic adenosine monophosphate overshoot compared to cell exposed to vehicle (p =? 0.0496) and morphine exposure conditions (p,=? 0.0136,1-way ANOVA). Finally,we showed that morphine exposure and withdrawal alters proportions of differentiated progenitor cell fates (2-way ANOVA,F =? 16.05,p 0.0001). Chronic morphine exposure increased proportions of nestin positive progenitors (p =? 0.0094),and decreased proportions of neuronal nuclear antigen positive neurons (NEUN) (p =? 0.0047) compared to those exposed to vehicle. Morphine withdrawal decreased proportions of glial fibrillary acidic protein positive cells of astrocytic lineage (p =? 0.044),and increased proportions of NEUN-positive neurons (p 0.0001) compared to those exposed to morphine only. Applications of this paradigm include mechanistic studies underscoring neural progenitor cell fate commitments in early neurodevelopment during morphine exposure and withdrawal. View Publication -
文献(Jan 2025) Nature Communications 16Mitotic chromatin marking governs the segregation of DNA damage
The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However,most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here,we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation,and the incorporation of newly synthesized histones at UV damage sites,that both prevent local mitotic phosphorylations on histone H3 serine residues. Functionally,this chromatin-marking pathway controls the segregation of UV damage in the cell progeny with consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions. The transmission of unrepaired DNA lesions through mitosis needs tight control. Here,the authors uncover a damaged chromatin marking mechanism driving the segregation of UV damage through mitosis with potential consequences on daughter cell fate. View Publication -
文献(Jan 2025) Burns & Trauma 13The empowering influence of air-liquid interface culture on skin organoid hair follicle development
AbstractBackgroundRodent models have been widely used to investigate skin development,but do not account for significant differences in composition compared to human skin. On the other hand,two-dimensional and three-dimensional engineered skin models still lack the complex features of human skin such as appendages and pigmentation. Recently,hair follicle containing skin organoids (SKOs) with a stratified epidermis,and dermis layer have been generated as floating spheres from human-induced pluripotent stem cells (hiPSCs).MethodsThe current study aims to investigate the generation of hiPSCs-derived SKOs using an air-liquid interface (ALI) model on transwell membranes (T-SKOs) and compares their development with conventional floating culture in low-attachment plates (F-SKOs).ResultsMature SKOs containing an epidermis,dermis,and appendages are created in both T-SKO and F-SKO conditions. It was found that the hair follicles are smaller and shorter in the F-SKO compared with T-SKOs. Additionally,the ALI conditions contribute to enhanced hair follicle numbers than conventional floating culture.ConclusionsTogether,this study demonstrates the significant influence of transwell culture on the morphogenesis of hair follicles within SKOs and highlights the potential for refinement of skin model engineering for advancing dermatology and skin research. View Publication -
文献(Dec 2024) Life Science Alliance 8 2RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD
Enhancing RuvBL1,but particularly RuvBL2 expression,reduces toxic dipeptide repeat proteins in vitro and in vivo models of C9orf72-linked ALS/FTD,suggesting that modulating RuvBL1/2 levels could be a promising therapeutic approach for C9ALS/FTD. A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore,decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study,we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2,which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1,but to a greater extent RuvBL2,reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines,primary neurons from the C9-500 transgenic mouse model,and patient-derived iPSC motor neurons. In vivo,we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus,modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD. View Publication -
文献(Apr 2024) The Journal of Experimental Medicine 221 6A de novo dominant-negative variant is associated with OTULIN-related autoinflammatory syndrome
This study describes an OTULIN-related autoinflammatory syndrome (ORAS) patient with two rare heterozygous variants of OTULIN (p.P152L and p.R306Q); the latter is a de novo variant that acts in a dominant-negative manner to cause ORAS. OTULIN-related autoinflammatory syndrome (ORAS),a severe autoinflammatory disease,is caused by biallelic pathogenic variants of OTULIN,a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here,we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells,which confirms that the patient has ORAS. However,although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN,the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis. Graphical Abstract View Publication -
文献(Jan 2025) Nature Communications 16Engineering synthetic signaling receptors to enable erythropoietin-free erythropoiesis
Blood transfusion plays a vital role in modern medicine,but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution,yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development,and EPO is among the most expensive media components. To address this challenge,we develop highly optimized small molecule-inducible synthetic EPO receptors (synEPORs) using design-build-test cycles and genome editing. By integrating synEPOR at the endogenous EPOR locus in O-negative induced pluripotent stem cells,we achieve equivalent erythroid differentiation,transcriptomic changes,and hemoglobin production using small molecules compared to EPO-supplemented cultures. This approach dramatically reduces culture media costs. Our strategy not only addresses RBC production challenges but also demonstrates how protein and genome engineering can introduce precisely regulated cellular behaviors,potentially improving scalable manufacturing of a wide range of clinically relevant cell types. Shortages of donor blood for transfusions can have severe medical consequences,and ex vivo production of red blood cells offers a potential solution. Here authors developed synthetic EPO receptors,which allow erythropoiesis (red blood cell production) without the need for expensive EPO. View Publication -
文献(Apr 2025) Molecular Neurodegeneration 20 2Inhibition of soluble epoxide hydrolase confers neuroprotection and restores microglial homeostasis in a tauopathy mouse model
BackgroundThe epoxyeicosatrienoic acids (EETs) are derivatives of the arachidonic acid metabolism with anti-inflammatory activities. However,their efficacy is limited due to the rapid hydrolysis by soluble epoxide hydrolase (sEH). Inhibition of sEH has been shown to stabilize the EETs and reduce neuroinflammation in A? mouse models of Alzheimer’s disease (AD). However,the role of the sEH-EET signaling pathway in other CNS cell types and neurodegenerative conditions are less understood.MethodsHere we investigated the mechanisms and functional role of the sEH-EET axis in tauopathy by treating PS19 mice with a small molecule sEH inhibitor TPPU and by crossing the PS19 mice with Ephx2 (gene encoding sEH) knockout mice. This was followed by single-nucleus RNA-sequencing (snRNA-seq),biochemical and immunohistochemical analysis,and behavioral assessments. Additionally,we examined the effects of the sEH-EET pathway in primary microglia cultures and human induced pluripotent stem cell (iPSC)-derived neurons exhibiting seeding-induced Tau inclusions.ResultssEH inhibition improved cognitive function,rescued neuronal cell loss,and reduced Tau pathology and microglial reactivity. snRNA-seq revealed that TPPU treatment upregulated genes involved in actin cytoskeleton and excitatory synaptic pathways. Treatment of human iPSC-derived neurons with TPPU enhanced synaptic density without affecting Tau accumulation,suggesting a cell-autonomous neuroprotective effect of sEH blockade. Furthermore,sEH inhibition reversed disease-associated and interferon-responsive microglial states in PS19 mice,while EET supplementation promoted Tau phagocytosis and clearance in primary microglia cultures.ConclusionThese findings demonstrate that sEH blockade or EET augmentation confers therapeutic benefit in neurodegenerative tauopathies by simultaneously targeting neuronal and microglial pathways.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-025-00844-x. View Publication -
文献(Dec 2024) Stem Cell Research & Therapy 15Generation of vascularized pancreatic progenitors through co-differentiation of endoderm and mesoderm from human pluripotent stem cells
BackgroundThe simultaneous differentiation of human pluripotent stem cells (hPSCs) into both endodermal and mesodermal lineages is crucial for developing complex,vascularized tissues,yet poses significant challenges. This study explores a method for co-differentiation of mesoderm and endoderm,and their subsequent differentiation into pancreatic progenitors (PP) with endothelial cells (EC).MethodsTwo hPSC lines were utilized. By manipulating WNT signaling,we optimized co-differentiation protocols of mesoderm and endoderm through adjusting the concentrations of CHIR99021 and mTeSR1. Subsequently,mesoderm and endoderm were differentiated into vascularized pancreatic progenitors (vPP) by adding VEGFA. The differentiation characteristics and potential of vPPs were analyzed via transcriptome sequencing and functional assays.ResultsA low-dose CHIR99021 in combination with mTeSR1 yielded approximately 30% mesodermal and 70% endodermal cells. Introduction of VEGFA significantly enhanced EC differentiation without compromising PP formation,increasing the EC proportion to 13.9%. Transcriptomic analyses confirmed the effectiveness of our protocol,showing up-regulation of mesodermal and endothelial markers,alongside enhanced metabolic pathways. Functional assays demonstrated that vPPs could efficiently differentiate into insulin-producing ?-cells,as evidenced by increased expression of ?-cell markers and insulin secretion.ConclusionOur findings provide a robust method for generating vPPs,which holds significant promise for regenerative medicine applications,particularly in diabetes treatment.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13287-024-04120-5. View Publication -
文献(Jun 2025) Nature Communications 16AAV-based delivery of RNAi targeting ataxin-2 improves survival and pathology in TDP-43 mice
Amyotrophic lateral sclerosis (ALS) involves motor neuron death due to mislocalized TDP-43. Pathologic TDP-43 associates with stress granules (SGs),and lowering the SG-associated protein ataxin-2 (ATXN2) using Atxn2-targeting antisense oligonucleotides prolongs survival in TAR4/4 sporadic ALS mice but failed in clinical trials likely due to poor target engagement. Here we show that an AAV with potent motor neuron transduction delivering Atxn2-targeting miRNAs reduces Atxn2 throughout the central nervous system at doses 40x lower than published work. In TAR4/4 mice,miAtxn2 increased survival (50%) and strength,and reduced motor neuron death,inflammation,and phosphorylated TDP-43. TAR4/4 transcriptomic dysregulation recapitulated ALS gene signatures that were rescued by miAtxn2,identifying potential therapeutic mechanisms and biomarkers. In slow progressing hemizygous mice,miAtxn2 slowed disease progression,and in ALS patient-derived lower motor neurons,our AAV vector transduced >95% of cells and potently reduced ATXN2 at MOI 4 logs lower than previously reported. These data support AAV-RNAi targeting ATXN2 as a translatable therapy for sporadic ALS. Amado et al. develop a gene therapy for sporadic ALS using motor neuron-targeting AAVs to deliver RNAi targeting ataxin-2. In a mouse model,survival,strength,and disease-related pathology are improved; and human motor neurons are strongly transduced. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号