技术资料
-
文献(Jul 2025) bioRxiv 5 27Robust Production of Parvalbumin Interneurons and Fast-Spiking Neurons from Human Medial Ganglionic Eminence Organoids
SummaryThe medial ganglionic eminence (MGE) gives rise to parvalbumin (PV)- and somatostatin (SST)-expressing cortical interneurons essential for regulating cortical excitability. Although PV interneurons are linked to various neurodevelopmental and neurodegenerative disorders,reliably generating them from human pluripotent stem cells (hPSCs) has been extremely challenging. We present a robust,reproducible protocol for generating single-rosette MGE organoids (MGEOs) from hPSCs. Transcriptomic analyses reveal that MGEOs exhibit MGE regional identity and faithfully model the developing human fetal MGE. As MGEOs mature,they generate abundant PV-expressing cortical interneurons,including putative basket and axoaxonic cells,at a scale not previously achieved in vitro. When fused with hPSC-derived cortical organoids,these interneurons rapidly migrate into cortical regions,integrate into excitatory networks,and contribute to complex electrophysiological patterns and the emergence of large numbers of fast-spiking neurons. MGEOs thus offer a powerful in vitro approach for probing human MGE-lineage cortical and subcortical GABAergic neuron development,modeling various neuropsychiatric disorders,and advancing cell-based therapies for neurodevelopmental and neurodegenerative disorders. Graphical abstract View Publication -
文献(Jul 2024) Nature Communications 15KAT8-mediated H4K16ac is essential for sustaining trophoblast self-renewal and proliferation via regulating CDX2
Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage,yet the underlying regulatory mechanisms remain elusive. Here,we show that trophoblast specific deletion of Kat8,a MYST family histone acetyltransferase,leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs),we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker,CDX2,via acetylating H4K16. Remarkably,CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover,increasing H4K16ac via using deacetylase SIRT1 inhibitor,EX527,restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8,CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth,which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL,shedding light on early gestational abnormalities. Embryo implantation failure is a leading cause of miscarriage,though the mechanisms underlying trophoblast defects are not well understood. Here they show that the histone acetyltransferase KAT8 is essential for proper activation of the trophoblast stemness gene CDX2,and that placental development can be partially rescued by inhibiting histone deacetylase activity. View Publication -
文献(Oct 2024) Bioengineering 11 10Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes
Stem cell fate decisions,including proliferation,differentiation,morphological changes,and viability,are impacted by microenvironmental cues such as physical and biochemical signals. However,the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study,we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion,differentiation,and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically,hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering,disease modeling,and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses. View Publication -
文献(Jun 2025) Nucleic Acids Research 53 11A flexible, high-throughput system for studying live mRNA translation with HiBiT technology
AbstractHiBiT is an engineered luciferase’s 11-amino-acid component that can be introduced as a tag at either terminus of a protein of interest. When the LgBiT component and a substrate are present,HiBiT and LgBiT dimerize forming a functional luciferase. The HiBiT technology has been extensively used for high-throughput protein turnover studies in cells. Here,we have adapted the use of the HiBiT technology to quantify messenger RNA (mRNA) translation temporally in vitro in the rabbit reticulocyte system and in cellulo in HEK293 cells constitutively expressing LgBiT. The assay system can uniquely detect differences in cap,5?UTR,modified nucleotide composition,coding sequence optimization and poly(A) length,and their effects on mRNA translation over time. Importantly,using these assays we established the optimal mRNA composition varied depending on the encoded protein of interest,highlighting the importance of screening methods tailored to the protein of interest,and not reliant on reporter proteins. Our findings demonstrated that HiBiT can be easily and readily adapted to monitor real-time mRNA translation in live cells and offers a novel and highly favourable method for the development of mRNA-based therapeutics. Graphical Abstract Graphical Abstract View Publication -
文献(Mar 2025) Cell Death & Disease 16 1CHCHD2 rescues the mitochondrial dysfunction in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome
Mohr-Tranebjaerg syndrome (MTS) is a rare X-linked recessive neurodegenerative disorder caused by mutations in the Translocase of Inner Mitochondrial Membrane 8A (TIMM8A) gene,which encodes TIMM8a,a protein localized to the mitochondrial intermembrane space (IMS). The pathophysiology of MTS remains poorly understood. To investigate the molecular mechanisms underlying MTS,we established induced pluripotent stem cells (iPSCs) from a male MTS patient carrying a novel TIMM8A mutation (c.225-229del,p.Q75fs95*),referred to as MTS-iPSCs. To generate an isogenic control,we introduced the same mutation into healthy control iPSCs (CTRL-iPSCs) using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9),resulting in mutant iPSCs (MUT-iPSCs). We differentiated the three iPSC lines into neurons and evaluated their mitochondrial function and neuronal development. Both MTS- and MUT-iPSCs exhibited impaired neuronal differentiation,characterized by smaller somata,fewer branches,and shorter neurites in iPSC-derived neurons. Additionally,these neurons showed increased susceptibility to apoptosis under stress conditions,as indicated by elevated levels of cytochrome c and cleaved caspase-3. Mitochondrial function analysis revealed reduced protein levels and activity of complex IV,diminished ATP synthesis,and increased reactive oxygen species (ROS) generation in MTS- and MUT-neurons. Furthermore,transmission electron microscopy revealed mitochondrial fragmentation in MTS-neurons. RNA sequencing identified differentially expressed genes (DEGs) involved in axonogenesis,synaptic activity,and apoptosis-related pathways. Among these DEGs,coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2),which encodes a mitochondrial IMS protein essential for mitochondrial homeostasis,was significantly downregulated in MTS-neurons. Western blot analysis confirmed decreased CHCHD2 protein levels in both MTS- and MUT-neurons. Overexpression of CHCHD2 rescued mitochondrial dysfunction and promoted neurite elongation in MTS-neurons,suggesting that CHCHD2 acts as a downstream effector of TIMM8a in the pathogenesis of MTS. In summary,loss-of-function of TIMM8a leads to a downstream reduction in CHCHD2 levels,collectively impairing neurogenesis by disrupting mitochondrial homeostasis. TIMM8a mutation (p.Q75fs95*) leads to mitochondrial dysfunction and neuronal defects in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome,which are rescued by overexpression of CHCHD2. TIMM8a translocase of inner mitochondrial membrane 8a,CHCHD2 coiled-coil-helix-coiled-coil-helix domain-containing protein 2,MTS Mohr–Tranebjaerg syndrome,I mitochondrial complex I,II mitochondrial complex II,III mitochondrial complex III,IV mitochondrial complex IV,Q coenzyme Q10,Cyt c cytochrome c. View Publication -
文献(Mar 2024) Biology Open 13 3Deterministic nuclear reprogramming of mammalian nuclei to a totipotency-like state by Amphibian meiotic oocytes for stem cell therapy in humans
ABSTRACTThe ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction,and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte,which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies,which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans. Summary: Stem cell therapy has shed light on incurable diseases. We describe a novel method for cell reprogramming and provide personalized stem cell sources for stem cell therapies. View Publication -
文献(Feb 2024) Frontiers in Cell and Developmental Biology 12 3In vitro characterization of 3D culture-based differentiation of human liver stem cells
Introduction: The lack of functional hepatocytes poses a significant challenge for drug safety testing and therapeutic applications due to the inability of mature hepatocytes to expand and their tendency to lose functionality in vitro. Previous studies have demonstrated the potential of Human Liver Stem Cells (HLSCs) to differentiate into hepatocyte-like cells within an in vitro rotary cell culture system,guided by a combination of growth factors and molecules known to regulate hepatocyte maturation. In this study,we employed a matrix multi-assay approach to comprehensively characterize HLSC differentiation. Methods: We evaluated the expression of hepatic markers using qRT-PCR,immunofluorescence,and Western blot analysis. Additionally,we measured urea and FVIII secretion into the supernatant and developed an updated indocyanine green in vitro assay to assess hepatocyte functionality. Results: Molecular analyses of differentiated HLSC aggregates revealed significant upregulation of hepatic genes,including CYP450,urea cycle enzymes,and uptake transporters exclusively expressed on the sinusoidal side of mature hepatocytes,evident as early as 1 day post-differentiation. Interestingly,HLSCs transiently upregulated stem cell markers during differentiation,followed by downregulation after 7 days. Furthermore,differentiated aggregates demonstrated the ability to release urea and FVIII into the supernatant as early as the first 24 h,with accumulation over time. Discussion: These findings suggest that a 3D rotation culture system may facilitate rapid hepatic differentiation of HLSCs. Despite the limitations of this rotary culture system,its unique advantages hold promise for characterizing HLSC GMP batches for clinical applications. View Publication -
文献(Feb 2025) APL Bioengineering 9 1Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome
The rare,accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a de novo c.1824 C?>?T point mutation of the LMNA gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis. A characteristic feature of HGPS arteries is loss of smooth muscle cells. An adenine base editor (ABE7.10max) corrected the point mutation and produced significant improvement in HGPS mouse lifespan,vascular smooth muscle cell density,and adventitial fibrosis. To assess whether base editing correction of human HGPS tissue engineered blood vessels (TEBVs) prevents the HGPS vascular phenotype and to identify the minimum fraction of edited smooth muscle cells needed to effect such changes,we transduced HGPS iPSCs with lentivirus containing ABE7.10max. Endothelial cells (viECs) and smooth muscle cells (viSMCs) obtained by differentiation of edited HGPS iPSCs did not express progerin and had double-stranded DNA breaks and reactive oxygen species at the same levels as healthy viSMCs and viECs. Editing HGPSviECs restored a normal response to shear stress. Normal vasodilation and viSMC density were restored in TEBVs made with edited cells. When TEBVs were prepared with at least 50% edited smooth muscle cells,viSMC proliferation and myosin heavy chain levels significantly improved. Sequencing of TEBV cells after perfusion indicated an enrichment of edited cells after 5?weeks of perfusion when they comprised 50% of the initial number of cells in the TEBVs. Thus,base editing correction of a fraction of HGPS vascular cells improves human TEBV phenotype. View Publication -
文献(Aug 2024) Scientific Reports 14Optimization of a human induced pluripotent stem cell-derived sensory neuron model for the in vitro evaluation of taxane-induced neurotoxicity
Human induced pluripotent stem cell-derived sensory neuron (iPSC-dSN) models are a valuable resource for the study of neurotoxicity but are affected by poor replicability and reproducibility,often due to a lack of optimization. Here,we identify experimental factors related to culture conditions that substantially impact cellular drug response in vitro and determine optimal conditions for improved replicability and reproducibility. Treatment duration and cell seeding density were both found to be significant factors,while cell line differences also contributed to variation. A replicable dose–response in viability was demonstrated after 48-h exposure to docetaxel or paclitaxel. Additionally,a replicable dose-dependent reduction in neurite outgrowth was demonstrated,demonstrating the applicability of the model for the examination of additional phenotypes. Overall,we have established an optimized iPSC-dSN model for the study of taxane-induced neurotoxicity. View Publication -
文献(Jul 2025) Scientific Data 12Temporal multiomics gene expression data of human embryonic stem cell-derived cardiomyocyte differentiation
Human embryonic stem cells (hESCs) serve as a valuable in vitro model for studying early human developmental processes due to their ability to differentiate into all three germ layers. Here,we present a comprehensive multi-omics dataset generated by differentiating hESCs into cardiomyocytes via the mesodermal lineage,collecting samples at 10 distinct time points. We measured mRNA levels by mRNA sequencing (mRNA-seq),translation levels by ribosome profiling (Ribo-seq),and protein levels by quantitative mass spectrometry-based proteomics. Technical validation confirmed high quality and reproducibility across all datasets,with strong correlations between replicates. This extensive dataset provides critical insights into the complex regulatory mechanisms of cardiomyocyte differentiation and serves as a valuable resource for the research community,aiding in the exploration of mammalian development and gene regulation. View Publication -
文献(Jul 2025) Frontiers in Pharmacology 16 3Machine learning analysis of ARVC informed by sodium channel protein-based interactome networks
BackgroundArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disorder characterized by sodium channel dysfunction. However,the clinical management of ARVC remains challenging. Identifying novel compounds for the treatment of ARVC is crucial for advancing drug development.PurposeIn this study,we aim to identify novel compounds for treating ARVC.MethodsMachine learning (ML) models were constructed using proteins analyzed from the scRNA-seq data of ARVC rats and their corresponding protein-protein interaction (PPI) network to predict binding affinity (BA). To validate these predictions,a series of experiments in cardiac organoids were conducted,including Western blotting,ELISA,MEA,and Masson staining to assess the effects of these compounds.ResultsWe first discovered and identified SCN5A as the most significantly affected sodium channel protein in ARVC. ML models predicted that Kaempferol binds to SCN5A with high affinity. In vitro experiments further confirmed that Kaempferol exerted therapeutic effects in ARVC.ConclusionThis study presents a novel approach for identifying potential compounds to treat ARVC. By integrating ML modeling with organoid validation,our platform provides valuable support in addressing the public health challenges posed by ARVC,with broad application prospects. Kaempferol shows promise as a lead compound for ARVC treatment. Graphical Abstract Detection and verification processes for ARVC target proteins are shown. The left panel includes a rat and heart diagram for ARVC,followed by ScRNA-seq data and a PPI network. The right panel describes experiments with cardiac organoids,focusing on cell viability,protein expression,heart failure markers,myocardial fibrosis,and electrophysiologic function. The bottom includes ML model construction,a heatmap for BA prediction,molecular docking,and dynamic simulation. View Publication -
文献(Nov 2024) Bio-protocol 14 22Multiplex Genome Editing of Human Pluripotent Stem Cells Using Cpf1
Targeted genome editing of human pluripotent stem cells (hPSCs) is critical for basic and translational research and can be achieved with site-specific endonucleases. Cpf1 (CRISPR from Prevotella and Francisella) is a programmable DNA endonuclease with AT-rich PAM sequences. In this protocol,we describe procedures for using a single vector system to deliver Cpf1 and CRISPR RNA (crRNA) for genome editing in hPSCs. This protocol enables indel formation and homologous recombination–mediated precise editing at multiple loci. With the delivery of Cpf1 and a single U6 promoter-driven guide RNA array composed of an AAVS1-targeting and a MAFB-targeting crRNA array,efficient multiplex genome editing at the AAVS1 (knockin) and MAFB (knockout) loci in hPSCs could be achieved in a single experiment. The edited hPSCs expressed pluripotency markers and could differentiate into neurons in vitro. This system also generated INS reporter hPSCs with a 6 kb cassette knockin at the INS locus. The INS reporter cells can differentiate into ?-cells that express tdTomato and luciferase,permitting fluorescence-activated cell sorting of hPSC-?-cells. By targeted screening of potential off-target sequences that are most homologous to crRNA sequences,no off-target mutations were detected in any of the tested sequences. This work provides an efficient and flexible system for precise genome editing in mammalian cells including hPSCs with the benefits of less off-target effects. Key features • A single-vector system to deliver Cpf1 and crRNA enables the sorting of transfected cells• Efficient and simultaneous multi-modular genome editing exemplified by mutation of MAFB and knockin of AAVS1 loci in a single experiment• Edited PSCs showed minimal off-target effects and can be differentiated into multiple cell types View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号