技术资料
-
文献(Jul 2025) Cell Communication and Signaling : CCS 23 23Gremlin1 repression-mediated mitochondrial network hyperfunction contributes to TCE-induced zebrafish cardiac defects
BackgroundTrichloroethylene (TCE) is a ubiquitous pollutant with potential capacity to induce congenital heart disease (CHD). However,the mechanisms underlying TCE-induced CHD are largely unraveled.MethodsWe exposed zebrafish embryos to TCE to investigate its cardiac development toxicity and related response factor through bulk RNA sequencing. We constructed transgenic fluorescent fish and employed the CRISPR/dCas9 system along with single-cell RNA sequencing to identify the genetic cause of TCE-induced CHD.ResultsWe found that early-stage exposure to TCE induced significant cardiac defects characterized by elongated SV-BA distance,thinned myocardium,and attenuated contractility. Gremlin1 encoding gene,grem1a,a putative target showing high expression at the beginning of cardiac development,was sharply down-regulated by TCE. Consistently,grem1a knockdown in zebrafish induced cardiac phenotypes generally like those of the TCE-treated group,accompanying the disarrangement of myofibril structure. Single-cell RNA-seq depicted that mitochondrial respiration in grem1a-repressed cardiomyocytes was greatly enhanced,ultimately leading to a branch from the normal trajectory of myocardial development. Accordingly,in vitro results demonstrated that GREM1 repression increased mitochondrial content,ATP production,mitochondrial reactive oxygen species,mitochondrial membrane potential,and disrupted myofibril expansion in hPSC-CMs.ConclusionsThese results suggested that TCE-induced gremlin1 repression could result in mitochondrial hyperfunction,thereby hampering cardiomyocyte development and causing cardiac defects in zebrafish embryos. This study not only provided a novel insight into the etiology for environmental stressor-caused cardiac development defects,but also offered a potential therapeutic and preventive target for TCE-induced CHD.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12964-025-02314-9. View Publication -
文献(Apr 2024) Biomedical Optics Express 15 5Deep learning based characterization of human organoids using optical coherence tomography
Organoids,derived from human induced pluripotent stem cells (hiPSCs),are intricate three-dimensional in vitro structures that mimic many key aspects of the complex morphology and functions of in vivo organs such as the retina and heart. Traditional histological methods,while crucial,often fall short in analyzing these dynamic structures due to their inherently static and destructive nature. In this study,we leveraged the capabilities of optical coherence tomography (OCT) for rapid,non-invasive imaging of both retinal,cerebral,and cardiac organoids. Complementing this,we developed a sophisticated deep learning approach to automatically segment the organoid tissues and their internal structures,such as hollows and chambers. Utilizing this advanced imaging and analysis platform,we quantitatively assessed critical parameters,including size,area,volume,and cardiac beating,offering a comprehensive live characterization and classification of the organoids. These findings provide profound insights into the differentiation and developmental processes of organoids,positioning quantitative OCT imaging as a potentially transformative tool for future organoid research. View Publication -
文献(Jul 2025) International Journal of Nanomedicine 20 10406Targeted Delivery of Exosome-Derived miRNA-185-5p Inhibitor via Liposomes Alleviates Apoptosis and Cuproptosis in Dilated Cardiomyopathy
PurposeDilated cardiomyopathy (DCM) is a prevalent form of heart failure with limited therapeutic options. This study explores a novel treatment strategy involving the delivery of exosome-derived miRNA-185-5p inhibitors encapsulated in liposomes,aiming to target cardiac tissue and alleviate myocardial apoptosis and cuproptosis in DCM.MethodsThe miRNA-185-5p inhibitor,identified in our previous study and extracted from exosomes,was encapsulated in liposomes functionalized with a cardiac-targeting peptide. This system was used in both in vitro and in vivo models of DCM induced by doxorubicin (DOX). We evaluated the effects of this treatment on cardiac function,apoptosis,cuproptosis,oxidative stress,and fibrosis using echocardiography,histological analysis,Western blotting,and biochemical assays.ResultsIn vitro experiments demonstrated that the Lipo@miR-185-5p inhibitor markedly attenuated apoptosis and cuproptosis in H9C2 cells and iPSC-derived cardiomyocytes,with a 42.6% reduction in apoptotic cell rates and over 50% downregulation of cuproptosis-related markers (both P < 0.01). In vivo,the targeted liposomal formulation significantly improved cardiac function in DOX-induced DCM mice,as evidenced by a 27.3% increase in left ventricular ejection fraction (LVEF) and a 36.5% reduction in myocardial fibrosis area (P < 0.01),along with enhanced survival. These findings underscore the therapeutic potential of this targeted delivery strategy for the treatment of dilated cardiomyopathy.ConclusionLipo@miR-185-5p inhibitor,utilizing exosome-derived miRNA and targeted liposomal delivery,effectively alleviates DCM-induced myocardial dysfunction. This approach represents a promising therapeutic strategy for cardiovascular diseases by targeting specific molecular mechanisms involved in heart failure. View Publication -
文献(Apr 2024) bioRxiv 12IS-PRM-based peptide targeting informed by long-read sequencing for alternative proteome detection
Alternative splicing is a major contributor of transcriptomic complexity,but the extent to which transcript isoforms are translated into stable,functional protein isoforms is unclear. Furthermore,detection of relatively scarce isoform-specific peptides is challenging,with many protein isoforms remaining uncharted due to technical limitations. Recently,a family of advanced targeted MS strategies,termed internal standard parallel reaction monitoring (IS-PRM),have demonstrated multiplexed,sensitive detection of pre-defined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here,we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (LR RNAseq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides,which are specific to individual gene product isoforms,serve as “triggers” and “targets” in the IS-PRM method,Tomahto. Using the model human stem cell line WTC11,LR RNAseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic “trigger” peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest,predicted to contain corresponding endogenous “target” peptides. Compared to DDA mode,Tomahto increased detectability of isoforms by 3.6-fold,resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This LR RNA seq-informed Tomahto targeted approach,called LRP-IS-PRM,is a new modality for generating protein-level evidence of alternative isoforms – a critical first step in designing functional studies and eventually clinical assays. View Publication -
文献(May 2025) Genome Medicine 17Combining chromosome conformation capture and exome sequencing for simultaneous detection of structural and single-nucleotide variants
BackgroundEffective molecular diagnosis of congenital diseases hinges on comprehensive genomic analysis,traditionally reliant on various methodologies specific to each variant type—whole exome or genome sequencing for single nucleotide variants (SNVs),array CGH for copy-number variants (CNVs),and microscopy for structural variants (SVs).MethodsWe introduce a novel,integrative approach combining exome sequencing with chromosome conformation capture,termed Exo-C. This method enables the concurrent identification of SNVs in clinically relevant genes and SVs across the genome and allows analysis of heterozygous and mosaic carriers. Enhanced with targeted long-read sequencing,Exo-C evolves into a cost-efficient solution capable of resolving complex SVs at base-pair accuracy.ResultsApplied to 66 human samples Exo-C achieved 100% recall and 73% precision in detecting chromosomal translocations and SNVs. We further benchmarked its performance for inversions and CNVs and demonstrated its utility in detecting mosaic SVs and resolving diagnostically challenging cases.ConclusionsThrough several case studies,we demonstrate how Exo-C’s multifaceted application can effectively uncover diverse causative variants and elucidate disease mechanisms in patients with rare disorders. Supplementary InformationThe online version contains supplementary material available at 10.1186/s13073-025-01471-3. View Publication -
文献(Mar 2025) Nucleic Acids Research 53 6Efficient DNA- and virus-free engineering of cellular transcriptomic states using dCas9 ribonucleoprotein (dRNP) complexes
AbstractFor genome editing,the use of CRISPR ribonucleoprotein (RNP) complexes is well established and often the superior choice over plasmid-based or viral strategies. RNPs containing dCas9 fusion proteins,which enable the targeted manipulation of transcriptomes and epigenomes,remain significantly less accessible. Here,we describe the production,delivery,and optimization of second generation CRISPRa RNPs (dRNPs). We characterize the transcriptional and cellular consequences of dRNP treatments in a variety of human target cells and show that the uptake is very efficient. The targeted activation of genes demonstrates remarkable potency,even for genes that are strongly silenced,such as developmental master transcription factors. In contrast to DNA-based CRISPRa strategies,gene activation is immediate and characterized by a sharp temporal precision. We also show that dRNPs allow very high-target multiplexing,enabling undiminished gene activation of multiple genes simultaneously. Applying these insights,we find that intensive target multiplexing at single promoters synergistically elevates gene transcription. Finally,we demonstrate in human stem and differentiated cells that the preferable features of dRNPs allow to instruct and convert cell fates efficiently without the need for DNA delivery or viral vectors. Graphical Abstract Graphical Abstract View Publication -
文献(Aug 2024) bioRxiv 76 25DNA damage-associated protein co-expression network in cardiomyocytes informs on tolerance to genetic variation and disease
SummaryCardiovascular disease (CVD) is associated with both genetic variants and environmental factors. One unifying consequence of the molecular risk factors in CVD is DNA damage,which must be repaired by DNA damage response proteins. However,the impact of DNA damage on global cardiomyocyte protein abundance,and its relationship to CVD risk remains unclear. We therefore treated induced pluripotent stem cell-derived cardiomyocytes with the DNA-damaging agent Doxorubicin (DOX) and a vehicle control,and identified 4,178 proteins that contribute to a network comprising 12 co-expressed modules and 403 hub proteins with high intramodular connectivity. Five modules correlate with DOX and represent distinct biological processes including RNA processing,chromatin regulation and metabolism. DOX-correlated hub proteins are depleted for proteins that vary in expression across individuals due to genetic variation but are enriched for proteins encoded by loss-of-function intolerant genes. While proteins associated with genetic risk for CVD,such as arrhythmia are enriched in specific DOX-correlated modules,DOX-correlated hub proteins are not enriched for known CVD risk proteins. Instead,they are enriched among proteins that physically interact with CVD risk proteins. Our data demonstrate that DNA damage in cardiomyocytes induces diverse effects on biological processes through protein co-expression modules that are relevant for CVD,and that the level of protein connectivity in DNA damage-associated modules influences the tolerance to genetic variation. View Publication -
文献(May 2025) Acta Neuropathologica Communications 13Therapeutic potential of NGF-enriched extracellular vesicles in modulating neuroinflammation and enhancing peripheral nerve remyelination
Neurological damage caused by peripheral nerve injury can be devastating and is a common neurological disorder that,along with muscle disorders,reduces the quality of life. Neural crest cells (NCCs) are a transient cell population that occurs during embryogenesis,can differentiate into various cells upon transplantation,and has potential therapeutic effects on neurological diseases. However,there are limitations to cell therapy,such as uncontrolled differentiation and tumor formation. Extracellular vesicles (EVs),which are non-cellular potential therapeutic candidates,are nanosized membrane-bound vesicles. Studies have been reported using starch cells derived from neural cells,such as neural stem cells,because they are involved in cell-to-cell communication and carry a variety of bioactive molecules. We investigated the effects of EVs isolated from NCCs on neuronal cell death and inflammation. Additionally,we overexpressed the nerve growth factor (NGF),which is involved in neural cell growth and proliferation,in NCCs to further investigate the effects of EVs containing NGF. NCCoe-NGF-EVs showed neuroprotective and regenerative properties by modulating inflammatory pathway,promoting Schwann cell activation,and enhancing remyelination. In vitro studies on NCCoe-NGF-EVs suppressed pro-inflammatory cytokines and reduced oxidative stress-induced neuronal apoptosis through NF-?B pathway inhibition and ERK,AKT signal activation. We also evaluated the effect of EVs on neuropathy by performing in vivo study. Our results suggest that NCCoe-NGF-EV had neuroprotective effects by reducing neuronal apoptosis and promoting neuronal proliferation based on neurite outgrowth and anti-inflammation effects treated with NCCoe-NGF-EVs. In addition,NCCoe-NGF-EVs were protected muscle loss caused by peripheral nerve injury. NCCoe-NGF-EV induced regeneration of damaged nerves and inhibited cell death through anti-inflammatory effects. This study suggests the potential of NGF-enriched EVs as non-cellular therapeutic platform for peripheral neuropathies and other neuroinflammatory disorders.Graphical abstract Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-025-02033-9. View Publication -
文献(Jul 2025) Cell Transplantation 34 2The safety and efficacy of ultrasound histotripsy and human pluripotent stem cell–derived hepatic spheroid implantation as a potential therapy for treatment of congenital metabolic liver disease: Assessment in an immunocompetent rodent model
Liver disease secondary to an inborn or genetic error of metabolism is a rare group of conditions often associated with chronic ill health and reduced survival. Curative treatment is mainly limited to liver transplantation with major long-term risks. Cell therapy is a promising alternative,but current approaches are ineffective. To develop histotripsy,a non-invasive high-intensity ultrasound procedure for liver tissue mechanical ablation,combined with hepatocyte stem cell implantation as a novel method of reversing liver failure from genetic disease. This study assessed the safety and feasibility of this approach in healthy rodents. Under general anaesthesia,adult rats (n = 12) underwent laparotomy and ultrasound histotripsy to the exposed liver. Around 1 million cells were injected into a single histotripsy cavity in each animal under direct vision (n = 10) with two receiving only histotripsy without cell injection. On completion of cell implant,haemostasis was secured,laparotomy incision closed and the animals recovered. Groups of animals were terminated immediately and after 4 h,8 h,24 h,4 days and 7 days. Liver and vital organs were assessed for procedure-related injuries and evidence of viable implanted cells by histology and immunohistochemistry. All animals successfully recovered,and no complication was observed throughout the study. Created cavities were successfully identified in histological analysis of rat. The presence of human cells was verified using anti-human nuclei antibody confirming successful implantation of liver organoids into decellularised cavities. In this feasibility study,we demonstrated suitability of histotripsy to create decellularised cavities in liver parenchyma. In addition,feasibility of direct transplantation of undissociated liver organoids into the created cavities was demonstrated as a potential approach to treat inborn liver disease by creating nodules of healthy cells capable of performing loss metabolic function. Therapeutic efficacy of this approach will be evaluated in an upcoming study. Graphical Abstract View Publication -
文献(Jul 2025) PLOS One 20 7Incorporation of iPSCs together with TERT-immortalized keratinocytes and fibroblasts into reconstructed human gingiva enhances phenotype of gingival epithelium
The oral mucosa plays an important role in maintaining oral and systemic health by protecting the body from harmful environmental stimuli and pathogens. Current reconstructed human gingiva models (RhG) serve as valuable testing platforms for safety and efficacy testing of dental materials,however they lack important phenotypic characteristics typical of the gingival epithelium. We aimed to determine whether incorporating induced pluripotent stem cells (iPSCs) into the hydrogel of a cell-line RhG (reconstructed epithelium on fibroblast-populated-hydrogel) would improve its phenotype. Immortalized human gingival fibroblasts were resuspended with and without iPSCs in collagen-fibrin hydrogels and gingival keratinocytes were seeded on top of the hydrogels to construct RhGs. RhGs were cultured at air-liquid interface for 1,2,4 and 6 weeks and extensively characterized by immunohistochemistry. In situ hybridization for X and Y chromosomes was conducted to identify female iPSCs and male fibroblasts in the RhGs. iPSC-RhGs showed increased epithelial thickening,rete ridge formation,increased cell proliferation and normalized expression of differentiation markers (keratins,involucrin,loricrin,SKALP/elafin) compared to standard RhGs,resulting in an epithelial phenotype very similar to the native gingiva. An increase in apoptotic cells was detected in iPSC-RhGs after 1 week air-exposed culture,and no iPSCs were detected in the hydrogels after 2 weeks air-exposed culture. The increase in apoptotic iPSCs after 1 week air-exposed culture correlated with an increase in keratinocyte proliferation responsible for the superior phenotype observed at 2 weeks. View Publication -
文献(May 2024) Journal of Neuroinflammation 21CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis
Autoimmune uveitis is a leading cause of severe vision loss,and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq,RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU),revealing that EAU causes broad retinal neuron degeneration and marker downregulation,and that Müller glia may act as antigen-presenting cells. Moreover,EAU immune response is primarily driven by Th1 cells,and results in dramatic upregulation of CC chemokines,especially CCL5,in the EAU retina. Accordingly,overexpression of CCR5,a CCL5 receptor,in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU,by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together,our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12974-024-03134-3. View Publication -
文献(Jul 2024) STAR Protocols 5 3Protocol for establishing inducible CRISPR interference system for multiple-gene silencing in human pluripotent stem cells
SummaryInducible loss-of-function strategies are crucial for understanding gene function. However,creating inducible,multiple-gene knockout models is challenging and time-consuming. Here,we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs,designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid,and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones.For complete details on the use and execution of this protocol,please refer to Matsui et al.1 Graphical abstract Highlights•Dox-inducible CRISPRi system to silence multiple genes concurrently•Instructions for generating CRISPRi hPSCs transduced with four sgRNAs•FOXA1/A2/A3-CRISPRi system represses expression of all three FOXA genes by 95% Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Inducible loss-of-function strategies are crucial for understanding gene function. However,creating inducible,multiple-gene knockout models is challenging and time-consuming. Here,we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs,designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid,and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号