技术资料
-
文献(May 2024) Cell Death & Disease 15 5Biallelic variants in
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade,an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders,the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing,we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay,intellectual disability,microcephaly,and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary,we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder. View Publication -
文献(Jun 2025) Bio-protocol 15 12A Hybrid 2D/3D Approach for Neural Differentiation Into Telencephalic Organoids and Efficient Modulation of FGF8 Signaling
Human brain development relies on a finely tuned balance between the proliferation and differentiation of neural progenitor cells,followed by the migration,differentiation,and connectivity of post-mitotic neurons with region-specific identities. These processes are orchestrated by gradients of morphogens,such as FGF8. Disruption of this developmental balance can lead to brain malformations,which underlie a range of complex neurodevelopmental disorders,including epilepsy,autism,and intellectual disabilities. Studying the early stages of human brain development,whether under normal or pathological conditions,remains challenging due to ethical and technical limitations inherent to working with human fetal tissue. Recently,human brain organoids have emerged as a powerful in vitro alternative,allowing researchers to model key aspects of early brain development while circumventing many of these constraints. Unlike traditional 2D cultures,where neural progenitors and neurons are grown on flat surfaces,3D organoids form floating self-organizing aggregates that better replicate the cellular diversity and tissue architecture of the developing brain. However,3D organoid protocols often suffer from significant variability between batches and individual organoids. Furthermore,few existing protocols directly manipulate key morphogen signaling pathways or provide detailed analyses of the resulting effects on regional brain patterning.• To address these limitations,we developed a hybrid 2D/3D approach for the rapid and efficient induction of telencephalic organoids that recapitulate major steps of anterior brain development. Starting from human induced pluripotent stem cells (hiPSCs),our protocol begins with 2D neural induction using small-molecule inhibitors to achieve fast and homogenous production of neural progenitors (NPs). After dissociation,NPs are reaggregated in Matrigel droplets and cultured in spinning mini-bioreactors,where they self-organize into neural rosettes and neuroepithelial structures,surrounded by differentiating neurons. Activation of the FGF signaling pathway through the controlled addition of FGF8 to the culture medium will modulate regional identity within developing organoids,leading to the formation of distinct co-developing domains within a single organoid. Our protocol combines the speed and reproducibility of 2D induction with the structural and cellular complexity of 3D telencephalic organoids. The ability to manipulate signaling pathways provides an additional opportunity to further increase system complexity,enabling the simultaneous development of multiple distinct brain regions within a single organoid. This versatile system facilitates the study of key cellular and molecular mechanisms driving early human brain development across both telencephalic and non-telencephalic areas. Key features • This protocol builds on the method established by Chambers et al. [1] for generating 2D neural progenitors,followed by dissociation and reaggregation into 3D brain organoids.• For optimal growth and maturation,telencephalic organoids are cultured in spinning mini-bioreactors [2] or on orbital shakers.• The protocol enables the generation of telencephalic neural progenitors in 10 days and produces 3D telencephalic organoids containing neocortical neurons within one month of culture.• Addition of morphogens in the culture medium (example: FGF8) enhances cellular heterogeneity,promoting the emergence of distinct brain domains within a single organoid. View Publication -
文献(Jan 2025) Cell Death & Disease 16 1Estrogen-dependent activation of TRX2 reverses oxidative stress and metabolic dysfunction associated with steatotic disease
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of hepatic disorders,ranging from simple steatosis to steatohepatitis,with the most severe outcomes including cirrhosis,liver failure,and hepatocellular carcinoma. Notably,MASLD prevalence is lower in premenopausal women than in men,suggesting a potential protective role of estrogens in mitigating disease onset and progression. In this study,we utilized preclinical in vitro models—immortalized cell lines and hepatocyte-like cells derived from human embryonic stem cells—exposed to clinically relevant steatotic-inducing agents. These exposures led to lipid droplet (LD) accumulation,increased reactive oxygen species (ROS) levels,and mitochondrial dysfunction,along with decreased expression of markers associated with hepatocyte functionality and differentiation. Estrogen treatment in steatotic-induced liver cells resulted in reduced ROS levels and LD content while preserving mitochondrial integrity,mediated by the upregulation of mitochondrial thioredoxin 2 (TRX2),an antioxidant system regulated by the estrogen receptor. Furthermore,disruption of TRX2,either pharmacologically using auranofin or through genetic interference,was sufficient to counteract the protective effects of estrogens,highlighting a potential mechanism through which estrogens may prevent or slow MASLD progression. View Publication -
文献(May 2025) Cells 14 11The Generation of Two Induced Pluripotent Cell Lines from Patients with an Atypical Familial Form of Lung Fibrosis
Background: Pulmonary fibrosis is a major disease that leads to the progressive loss of lung function. The disease manifests early,resulting in type 2 respiratory failure. This is likely due to the bronchocentric fibrosis around the major airways,which causes airflow limitation. It affects approximately three million patients worldwide and has a poor prognosis. Skin fibroblasts isolated from patients offer valuable insights into understanding the disease mechanisms,identifying the genetic causes,and developing personalized therapies. However,the use of skin fibroblasts to study a disease that exclusively impacts the lungs is often questioned,particularly since lung fibrosis primarily affects the alveolar epithelium. Method: We report the reprogramming of skin fibroblasts from patients with an atypical early-onset form of lung fibrosis into induced pluripotent stem cells (iPSCs) and subsequently into alveolar epithelial cells. This was achieved using a Sendai virus approach. Results: We show that the reprogrammed cells carry mutations in the calcium-binding protein genes S100A3 and S100A13,leading to diminished protein expression,thus mimicking the patients’ cells. Additionally,we demonstrate that the generated patient iPSCs exhibit aberrant calcium and mitochondrial functions. Conclusions: Due to the lack of a suitable animal model that accurately resembles the human disease,generating patient lung cells from these iPSCs can provide a valuable “disease in a dish” model for studying the atypical form of inherited lung fibrosis. This condition is associated with mutations in the calcium-binding protein genes S100A3 (NM_002960) and S100A13 (NM_001024210),aiding in the understanding of its pathogenesis. View Publication -
文献(Feb 2024) F1000Research 12 2-3Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model
Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types,such as cardiac fibroblasts,into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore,the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs,incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis. View Publication -
文献(Jun 2025) Cell Reports Methods 5 4A cost- and time-efficient method for high-throughput cryoprocessing and tissue analysis using multiplexed tissue molds
SummaryCryosectioning remains the gold standard for antibody and transcriptomic/in situ hybridization tissue analysis. However,tissue processing is time-consuming and costly,limiting routine and diagnostic use. Currently,no commercially available protocols or products exist for multiplexing this process. Here,we introduce multiplexed tissue molds (MTMs) that enable high-throughput cryoprocessing—cutting costs and workload by up to 96% while permitting the processing of tissues of various sizes and origins. We demonstrate compatibility with heterogeneous tissues by processing 19 different adult mouse tissues in parallel. Furthermore,we process up to ?110 neural organoids of different ages and sizes simultaneously and assess their neural differentiation marker expression. MTMs allow sectioning-based tissue analysis when labor,time,and cost are limiting factors. MTMs could be used to compare high specimen numbers in histopathological settings,organism-wide antigen and antibody targeting studies,high-throughput tissue screens,and defined tissue section positioning for,e.g.,spatial transcriptomics experiments. Graphical abstract Highlights•Multiplexed tissue molds (MTMs) drastically upscale cryosectioning procedures•MTMs can simultaneously accommodate up to 19 mouse organs and ?110 cerebral organoids•MTMs reduce analysis costs and processing times of tissues by up to 96%•MTMs could be used to reduce diagnostic costs and for spatial transcriptomics MotivationEfficient cryosectioning remains a critical yet labor- and cost-intensive step for immunohistochemistry and in situ hybridization,limiting routine diagnostic and research applications. The increasing demand for high-throughput tissue analysis—driven by advances in organoid and three-dimensional (3D) culture systems and tissue analysis for diagnostics—necessitates methods capable of processing numerous heterogeneous samples simultaneously. Current protocols lack multiplexing capabilities,leading to variability and extended processing times. Our work introduces multiplexed tissue molds (MTMs),a scalable solution that drastically reduces costs and labor by up to 96% while maintaining tissue integrity and consistency,thereby enabling large-scale (>100 tissues) comparative analyses and enhanced experimental reproducibility as well as access to tissue analysis,where cost is a restrictive factor. Reumann et al. develop multiplexed tissue molds (MTMs),which allow upscaling of tissue processing (up to 19 mouse organs or ?110 cerebral organoids simultaneously) while reducing workload and associated analysis costs by up to 96%. MTMs allow cryosection-based tissue analysis when labor,time,and cost are limiting factors and could be used for patient sample analysis as well as spatial transcriptomics approaches. View Publication -
文献(Jun 2025) Nature Neuroscience 28 6Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress
Aging is one of the most prominent risk factors for neurodegeneration,yet the molecular mechanisms underlying the deterioration of old neurons are mostly unknown. To efficiently study neurodegeneration in the context of aging,we transdifferentiated primary human fibroblasts from aged healthy donors directly into neurons,which retained their aging hallmarks,and we verified key findings in aged human and mouse brain tissue. Here we show that aged neurons are broadly depleted of RNA-binding proteins,especially spliceosome components. Intriguingly,splicing proteins—like the dementia- and ALS-associated protein TDP-43—mislocalize to the cytoplasm in aged neurons,which leads to widespread alternative splicing. Cytoplasmic spliceosome components are typically recruited to stress granules,but aged neurons suffer from chronic cellular stress that prevents this sequestration. We link chronic stress to the malfunctioning ubiquitylation machinery,poor HSP90? chaperone activity and the failure to respond to new stress events. Together,our data demonstrate that aging-linked deterioration of RNA biology is a key driver of poor resiliency in aged neurons. Rhine et al. find that neuronal aging leads to widespread dysregulation of RNA biology,including mislocalization of splicing proteins like TDP-43,chronic cellular stress and reduced resiliency. View Publication -
文献(May 2024) Cell Reports Medicine 5 5The adipose-neural axis is involved in epicardial adipose tissue-related cardiac arrhythmias
SummaryDysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However,their exact roles in triggering arrhythmia remain elusive. Here,using an in vitro coculture system with sympathetic neurons,cardiomyocytes,and adipocytes,we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY),which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R,NCX,or CaMKII. Moreover,increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia. Graphical abstract Highlights•Stem cell-based coculture model can simulate the pathogenesis of cardiac arrhythmia•The adipose-neural axis plays critical roles in cardiac arrhythmias•Leptin,NPY/Y1R,NCX,and CaMKII are potential intervention targets for arrhythmia•Increased EAT thickness and leptin/NPY levels are detected in CS blood of AF patients Fan et al. establish a stem cell-based coculture model to mimic the in vivo cardiac microenvironment and elucidate that the adipose-neural interaction plays a critical role in epicardial adipose tissue-related cardiac arrhythmia through leptin-NPY axis. Their results may provide potential therapeutic targets for treating arrhythmia. View Publication -
文献(Jun 2024) Cell reports 43 6Interferon-? induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease
SUMMARY Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19,HIV,and apolipoprotein-L1 (APOL1) nephropathy,but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids,primary endothelial cells,and patient samples,we demonstrate that IFN-? induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing,immunoblotting,and quantitative fluorescence-based assays reveal that IFN-?-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-? signaling inhibits APOL1 expression,prevents upregulation of pyroptosis-associated genes,and rescues vascular networks. Multiomic analyses in patients with COVID-19,proteinuric kidney disease,and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-? signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis,suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy,which can be targeted therapeutically. In brief Juliar et al. address interferon signaling in kidney disease. Organoids,primary cells,and clinical datasets reveal that interferon signaling simultaneously induces APOL1 expression and endothelial cell pyroptosis. This suggests a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy,which can be targeted therapeutically. The findings may also be relevant in other organs. Graphical Abstract View Publication -
文献(Dec 2024) International Journal of Molecular Sciences 26 1Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations,small insertions,and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA),which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs,especially when the genetic context precludes the screening of multiple pegRNAs,and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system,we generated other isogenic models of inherited retinal diseases (IRDs),including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure,such as plasmid concentrations,PE component ratios,and delivery method settings,showing that our improved workflow increased the hiPSC editing efficiency. View Publication -
文献(Feb 2025) Nature Communications 16Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation
Doublecortin is a neuronal microtubule-associated protein that regulates microtubule structure in neurons. Mutations in Doublecortin cause lissencephaly and subcortical band heterotopia by impairing neuronal migration. We use CRISPR/Cas9 to knock-out the Doublecortin gene in induced pluripotent stem cells and differentiate the cells into cortical neurons. DCX-KO neurons show reduced velocities of nuclear movements and an increased number of neurites early in neuronal development,consistent with previous findings. Neurite branching is regulated by a host of microtubule-associated proteins,as well as by microtubule polymerization dynamics. However,EB comet dynamics are unchanged in DCX-KO neurons. Rather,we observe a significant reduction in ?-tubulin polyglutamylation in DCX-KO neurons. Polyglutamylation levels and neuronal branching are rescued by expression of Doublecortin or of TTLL11,an ?-tubulin glutamylase. Using U2OS cells as an orthogonal model system,we show that DCX and TTLL11 act synergistically to promote polyglutamylation. We propose that Doublecortin acts as a positive regulator of ?-tubulin polyglutamylation and restricts neurite branching. Our results indicate an unexpected role for Doublecortin in the homeostasis of the tubulin code. Lissencephaly is a severe neurodevelopmental disease often caused by mutations in the Dcx gene. Using a human cellular model of lissencephaly,the authors report that DCX restricts neuronal branching by activating tubulin polyglutamylation. View Publication -
文献(Nov 2024) iScience 27 12HucMSCs can alleviate abnormal vasculogenesis induced by high glucose through the MAPK signaling pathway
SummaryVascular complications caused by diabetes mellitus contribute a major threat to increased disability and mortality of diabetic patients,which are characterized by damaged endothelial cells and angiogenesis. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have been demonstrated to alleviate endothelial cell damage and improve angiogenesis. However,these investigations overlooked the pivotal role of vasculogenesis. In this study,we utilized blood vessel organoids (BVOs) to investigate the impact of high glucose on vasculogenesis and subsequent angiogenesis. We found that BVOs in the vascular lineage induction stage were more sensitive to high glucose and more susceptible to affect endothelial cell differentiation and function. Moreover,hucMSCs can alleviate the high glucose-induced inhibition of endothelial cell differentiation and dysfunction through MAPK signaling pathway downregulation,with the MAPK activator dimethyl fumarate further illustrating the results. Thereby,we demonstrated that high glucose can lead to abnormal vasculogenesis and impact subsequent angiogenesis,and hucMSCs can alleviate this effect. Graphical abstract Highlights•The induction process of BVOs can be divided into vasculogenesis and angiogenesis•The formation of VI-BVOs is more vulnerable to damage from high glucose than MI-BVOs•HucMSCs can improve vasculogenesis through the MAPK signaling pathway Pathophysiology; Stem cells research; Vascular remodeling View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号