技术资料
-
文献(Mar 2025) Cell Regeneration 14 12Human induced pluripotent stem cells derived neutrophils display strong anti-microbial potencies
Neutrophils are essential innate immune cells with unusual anti-microbial properties while dysfunctions of neutrophils lead to severe health problems such as lethal infections. Generation of neutrophils from human induced pluripotent stem cells (hiPSCs) is highly promising to produce off-the-shelf neutrophils for transfusion therapies. However,the anti-microbial potencies of hiPSCs derived neutrophils (iNEUs) remain less documented. Here,we develop a scalable approach to generate iNEUs in a chemical defined condition. iNEUs display typical neutrophil characters in terms of phagocytosis,migration,formation of neutrophil extracellular traps (NETs),etc. Importantly,iNEUs display a strong killing potency against various bacteria such as K.pneumoniae,P.aeruginosa,E.coli and S.aureus. Moreover,transfusions of iNEUs in mice with neutrophil dysfunction largely enhance their survival in lethal infection of different bacteria. Together,our data show that hiPSCs derived neutrophils hold strong anti-microbial potencies to protect severe infections under neutrophil dysfunction conditions.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13619-025-00227-z. View Publication -
文献(Mar 2025) Frontiers in Molecular Neuroscience 18The restoration of REST inhibits reactivity of Down syndrome iPSC-derived astrocytes
IntroductionAccumulating evidence indicates that the increased presence of astrocytes is fundamentally linked to the neurological dysfunctions observed in individuals with Down syndrome (DS). REST (RE1-silencing transcription factor),as a chromatin modifier,regulates 15,450 genes in humans. REST is a key regulatory element that governs astrocyte differentiation,development,and the maintenance of their physiological functions. The downregulation of REST may disrupt the homeostatic balance of astrocytes in DS.MethodsThis study aims to elucidate the role of REST in DS-astrocytes through comprehensive transcriptomic analysis and experimental validation.ResultsTranscriptomic analysis identified that REST-targeted differentially expressed genes (DEGs) in DS astrocytes are enriched in pathways associated with inflammatory response. Notably,our findings in astrocytes derived from DS human induced pluripotent stem cells (hiPSCs) show that the loss of nucleus REST leads to an upregulation of inflammatory mediators and markers indicative of the presence of reactive astrocytes. Lithium treatment,which restored nucleus REST in trisomic astrocytes,significantly suppressed the expression of these inflammatory mediators and reactive astrocyte markers.DiscussionThese findings suggest that REST is pivotal in modulating astrocyte functionality and reactivity in DS. The loss of REST in DS-astrocytes prompts the formation of reactive astrocytes,thereby compromising central nervous system homeostasis. Lithium treatment possesses the potential to rescue astrocyte reactivity in DS by restoring nucleus REST expression. View Publication -
文献(Jul 2024) Cell & Bioscience 14 6?-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions
Background?-catenin,acting as the core effector of canonical Wnt signaling pathway,plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models,the ?-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood,partly due to the rapid and complex cell fate transitions during early differentiation.ResultsIn this study,we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of ?-catenin. Our analysis showed that a truncated ?-catenin lacking both N- and C-terminal domains (?N148C) could robustly rescue the DE formation,whereas hyperactive ?-catenin mutants with S33Y mutation or N-terminal deletion (?N90) had limited ability to induce DE lineage. Notably,the ?N148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak ?-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes,whereas the hyperactive ?-catenin mutants activated mesoderm genes.ConclusionOur study uncovered an unconventional regulatory function of ?-catenin through weak transactivation,indicating that the levels of ?-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13578-024-01279-5. View Publication -
文献(Mar 2025) Biological Research 58 5Endocannabinoid system upregulates the enrichment and differentiation of human iPSC- derived spermatogonial stem cells via CB2R agonism
BackgroundMale factor infertility (MFI) is responsible for 50% of infertility cases and in 15% of the cases sperm is absent due to germ cell aplasia. Human induced pluripotent stem cell (hiPSC)-derived spermatogonial stem cells (hSSCs) could serve as an autologous germ cell source for MFI in patients with an insufficient sperm yield for assisted reproductive technology (ART). The endocannabinoid system (ECS) has been implicated to play a role in mouse embryonic stem cells (mESCs) and the human testicular environment. However,the contribution of the ECS in hiPSCs and hiPSC-derived hSSCs is currently unknown. Here,we aimed to assess whether hiPSCs and hiPSC-derived hSSCs are regulated by components of the ECS and whether manipulation of the ECS could increase the yield of hiPSC-derived SSCs and serve as an autologous cell-based source for treatment of MFI.MethodsWe reprogrammed human dermal fibroblasts (hDFs) to hiPSCs,induced differentiation of hSSC from hiPSCs and evaluated the presence of ECS ligands (AEA,2-AG) by LC/MS,receptors (CB1R,CB2R,TRPV1,GPR55) by qPCR,flow cytometry and immunofluorescent labeling. We then examined the efficacy of endogenous and synthetic selective ligands (ACPA,CB65,CSP,ML184) on proliferation of hiPSCs using real-time cell analysis (RTCA) and assessed the effects of on CB2R agonism on hiPSC pluripotency and differentiation to hSSCs.ResultshiPSCs from hDFs expressed the pluripotency markers OCT4,SOX2,NANOG,SSEA4 and TRA-1-60; and could be differentiated into ID4+,PLZF?+?hSSCs. hiPSCs and hiPSC-derived hSSCs secreted AEA and 2-AG at 10??10 ??10??9 M levels. Broad expression of all ECS receptors was observed in both hiPSCs and hiPSC-derived hSSCs,with a higher CB2R expression in hSSCs in comparison to hiPSCs. CB2R agonist CB65 promoted proliferation and differentiation of hiPSCs to hiPSC-hSSCs in comparison to AEA,2-AG,ACPA,CSP and ML184. The EC50 of CB65 was determined to be 2.092?×?10??8 M for support of pluripotency and preservation of stemness on hiPSCs from 78 h. CB65 stimulation at EC50 also increased the yield of ID4?+?hSSCs,PLZF?+?SSPCs and SCP3?+?spermatocytes from day 10 to 12.ConclusionsWe demonstrated here for the first time that stimulation of CB2R results in an increased yield of hiPSCs and hiPSC-derived hSSCs. CB65 is a potent CB2R agonist that can be used to increase the yield of hiPSC-derived hSSCs offering an alternative source of autologous male germ cells for patients with MFI. Increasing the male germ/stem cell pool by CB65 supplementation could be part of the ART-associated protocols in MFI patients with complete germ cell aplasia.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40659-025-00596-4. View Publication -
文献(Jan 2025) Nature Communications 16Phosphorylation of a nuclear condensate regulates cohesion and mRNA retention
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle,nuclear speckles dissolve following phosphorylation of their protein components. Here,we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of mRNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing,we characterize the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm,particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increases with nuclear speckle cohesion,the ratios of most mRNA species to each other are constant,indicating non-selective retention. We further find that cellular responses to heat shock,oxidative stress,and hypoxia include changes to the phosphorylation and cohesion of nuclear speckles and to mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization. Here the authors study how interactions with nuclear speckles help localize mRNA in cells. They find that modifications of the proteins in these structures affects their cohesion and can modulate mRNA retention under stress. View Publication -
文献(Jan 2025) Cells 14 3A Recombinase-Mediated Cassette Exchange Platform for a Triple Independent Inducible Expression System for Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) and their differentiated derivatives represent valuable tools for studying development,modeling diseases,and advancing cell therapy. Recent improvements in genome engineering allow for precise modifications of hPSCs,further enhancing their utility in basic and translational research. Here we describe a Recombinase-Mediated Cassette Exchange (RMCE) platform in hPSCs that allows for the highly efficient,rapid,and specific integration of transgenes. The RCME-mediated DNA integration process is nearly 100% efficient,without negatively affecting the pluripotency or karyotypic stability of hPSCs. Taking advantage of this convenient system,we first established a dual inducible expression system based on the Tet-On and Cumate-On systems,allowing for the inducible expression of two transgenes independently. Secondly,we incorporated a Tet-on inducible system,driving the expression of three genes simultaneously. However,two genes also contain independent degron sequences,allowing for precise control over the expression of each gene individually. We demonstrated the utility of these systems in hPSCs,as well as their functionality after differentiation into cells that were representative of the three germ layers. Lastly,we used the triple inducible system to investigate the lineage commitment induced by the pancreatic transcription factors NKX6.1 and PDX1. We found that controlled dual expression,but not individual expression,biases hPSC embryoid body differentiation towards the pancreatic lineage by inducing the expression of the NeuroD program. In sum,we describe a novel genetic engineering platform that allows for the efficient and fast integration of any desired transgene(s) in hPSCs using RMCE. We anticipate that the ability to modulate the expression of three transgenes simultaneously will further accelerate discoveries using stem cell technology. View Publication -
文献(Feb 2025) Nature Communications 16Dysregulation of mitochondrial ?-ketoglutarate dehydrogenase leads to elevated lipid peroxidation in CHCHD2-linked Parkinson’s disease models
Dysregulation of mitochondrial function has been implicated in Parkinson’s disease (PD),but the role of mitochondrial metabolism in disease pathogenesis remains to be elucidated. Using an unbiased metabolomic analysis of purified mitochondria,we identified alterations in ?-ketoglutarate dehydrogenase (KGDH) pathway upon loss of PD-linked CHCHD2 protein. KGDH,a rate-limiting enzyme complex in the tricarboxylic acid cycle,was decreased in CHCHD2-deficient male mouse brains and human dopaminergic neurons. This deficiency of KGDH led to elevated ?-ketoglutarate and increased lipid peroxidation. Treatment of CHCHD2-deficient dopaminergic neurons with lipoic acid,a KGDH cofactor and antioxidant agent,resulted in decreased levels of lipid peroxidation and phosphorylated ?-synuclein. CHCHD10,a close homolog of CHCHD2 that is primarily linked to amyotrophic lateral sclerosis/frontotemporal dementia,did not affect the KGDH pathway or lipid peroxidation. Together,these results identify KGDH metabolic pathway as a targetable mitochondrial mechanism for correction of increased lipid peroxidation and ?-synuclein in Parkinson’s disease. An unbiased metabolomic analysis identifies ?-ketoglutarate dehydrogenase metabolic pathway as a targetable mitochondrial mechanism for correction of increased lipid peroxidation in CHCHD2-linked Parkinson’s disease models. View Publication -
文献(Dec 2024) International Journal of Molecular Sciences 26 1Conventional and Tropism-Modified High-Capacity Adenoviral Vectors Exhibit Similar Transduction Profiles in Human iPSC-Derived Retinal Organoids
Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however,their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study,we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles,which,with a capacity of up to 36 kb,can potentially accommodate all known retinal gene coding sequences. We utilized HC-AdVs based on the classical adenoviral type 5 (AdV5) and on a fiber-modified AdV5.F50 version,both engineered to deliver a 29.6 kb vector genome encoding a fluorescent reporter construct. The tropism of these HC-AdVs was evaluated in an induced pluripotent stem cell (iPSC)-derived human retinal organoid model. Both vector types demonstrated robust transduction efficiency,with sustained transgene expression observed for up to 110 days post-transduction. Moreover,we found efficient transduction of photoreceptors and Müller glial cells,without evidence of reactive gliosis or loss of photoreceptor cell nuclei. However,an increase in the thickness of the photoreceptor outer nuclear layer was observed at 110 days post-transduction,suggesting potential unfavorable effects on Müller glial or photoreceptor cells associated with HC-AdV transduction and/or long-term reporter overexpression. These findings suggest that while HC-AdVs show promise for large retinal gene delivery,further investigations are required to assess their long-term safety and efficacy. View Publication -
文献(Jan 2025) Scientific Reports 15 1DGCR2 targeting affibody molecules for delivery of drugs and imaging reagents to human beta cells
A distinctive feature of both type 1 and type 2 diabetes is the waning of insulin-secreting beta cells in the pancreas. New methods for direct and specific targeting of the beta cells could provide platforms for delivery of pharmaceutical reagents. Imaging techniques such as Positron Emission Tomography (PET) rely on the efficient and specific delivery of imaging reagents,and could greatly improve our understanding of diabetes etiology as well as providing biomarkers for viable beta-cell mass in tissue,in both pancreas and in islet grafts.The DiGeorge Syndrome Critical Region Gene 2 (DGCR2) protein has been suggested as a beta-cell specific protein in the pancreas,but so far there has been a lack of available high-affinity binders suitable for targeted drug delivery or molecular imaging. Affibody molecules belong to a class of small affinity proteins with excellent properties for molecular imaging. Here,we further validate the presence of DGCR2 in pancreatic and stem cell (SC)-derived beta cells,and then describe the generation and selection of several Affibody molecules candidates that target human DGCR2. Using an in-house developed directed evolution method,new DGCR2-binding Affibody molecules were generated and evaluated for thermal stability and affinity. The Affibody molecules variants were further developed as targeting agents for delivering imaging reagents to beta cell. The Affibody molecule ZDGCR2:AM106 displayed nanomolar affinity,suitable stability and biodistribution,with negligible toxicity to islets,qualifying it as a suitable lead candidate for further development as a tool for specific delivery of drugs and imaging reagents to beta cells.Supplementary InformationThe online version contains supplementary material available at 10.1038/s41598-024-84574-y. View Publication -
文献(Jun 2025) Biology 14 7Macrophage Migration Inhibitory Factor Suppresses Natural Killer Cell Response and Promotes Hypoimmunogenic Stem Cell Engraftment Following Spinal Cord Injury
Simple SummaryHuman induced pluripotent stem cells hold great promise for treating neurological diseases. One of the biggest challenges,however,is the immune system: if transplanted cells are not a perfect match,the body may reject them. To overcome this,we aimed to create “off-the-shelf”,universal cells that could be safely used in anyone,without needing a matched donor. Using CRISPR-mediated gene editing tool,we deleted two key genes,B2M and CIITA,that are responsible for making proteins recognized by the immune system. Additionally,we engineered the cells to produce MIF,which helps protect against natural killer cell attacks. Overall,our study shows that combining MIF overexpression with the removal of B2M and CIITA can produce universal cells that avoid rejection by the immune system. This approach could help make stem cell therapies more widely available and effective for spinal cord injuries and other diseases. AbstractHuman induced pluripotent stem cells (iPSCs) offer immense potential as a source for cell therapy in spinal cord injury (SCI) and other diseases. The development of hypoimmunogenic,universal cells that could be transplanted to any recipient without requiring a matching donor could significantly enhance their therapeutic potential and accelerate clinical translation. To create off-the-shelf hypoimmunogenic cells,we used CRISPR-Cas9 to delete B2M (HLA class I) and CIITA (master regulator of HLA class II). Double-knockout (DKO) iPSC-derived neural progenitor cells (NPCs) evaded T-cell-mediated immune rejection in vitro and after grafting into the injured spinal cord of athymic rats and humanized mice. However,loss of HLA class I heightened susceptibility to host natural killer (NK) cell attack,limiting graft survival. To counter this negative effect,we engineered DKO NPCs to overexpress macrophage migration inhibitory factor (MIF),an NK cell checkpoint ligand. MIF expression markedly reduced NK cell-mediated cytotoxicity and improved long-term engraftment and integration of NPCs in the animal models for spinal cord injury. These findings demonstrate that MIF overexpression,combined with concurrent B2M and CIITA deletion,generates hiPSC neural derivatives that escape both T- and NK-cell surveillance. This strategy provides a scalable route to universal donor cells for regenerative therapies in SCI and potentially other disorders. View Publication -
文献(May 2024) Nature Communications 15Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data
The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases,thereby facilitating the identification of alternative splicing events and isoform expressions. Recently,numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless,there remains a deficiency in comparative studies that systemically evaluate the performance of these tools,which are implemented with different algorithms,under various simulations that encompass potential influencing factors. In this study,we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data,which represented diverse sequencing platforms generated by an in-house simulator,RNA sequins (sequencing spike-ins) data,as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS,with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data. Recently,various computational tools have emerged for detecting mRNA isoforms using long-read sequencing data. Here,the authors systemically evaluate and compare the performance of these tools. View Publication -
文献(Sep 2024) Nature Communications 15Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation
Oxidative phosphorylation (OXPHOS) in the mitochondrial inner membrane is a therapeutic target in many diseases. Neural stem cells (NSCs) show progress in improving mitochondrial dysfunction in the central nervous system (CNS). However,translating neural stem cell-based therapies to the clinic is challenged by uncontrollable biological variability or heterogeneity,hindering uniform clinical safety and efficacy evaluations. We propose a systematic top-down design based on membrane self-assembly to develop neural stem cell-derived oxidative phosphorylating artificial organelles (SAOs) for targeting the central nervous system as an alternative to NSCs. We construct human conditionally immortal clone neural stem cells (iNSCs) as parent cells and use a streamlined closed operation system to prepare neural stem cell-derived highly homogenous oxidative phosphorylating artificial organelles. These artificial organelles act as biomimetic organelles to mimic respiration chain function and perform oxidative phosphorylation,thus improving ATP synthesis deficiency and rectifying excessive mitochondrial reactive oxygen species production. Conclusively,we provide a framework for a generalizable manufacturing procedure that opens promising prospects for disease treatment. Regulating oxidative phosphorylation and restoring redox homeostasis are crucial in neurological disorders. Here,the authors develop a top-down membrane self-assembly strategy to develop stem cell-derived artificial organelles (SAOs) that mimic mitochondrial oxidative phosphorylation without the risks associated with stem cell therapy. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号