Panova AV et al. (APR 2013)
Acta Naturae 5 17 54--61
Late Replication of the Inactive X Chromosome Is Independent of the Compactness of Chromosome Territory in Human Pluripotent Stem Cells
Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi),as well as constitutive heterochromatin,replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs),the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome- specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus,the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However,the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.
View Publication
文献
Zhou Y et al. ( 2013)
Cell Death and Disease 4 6 e695
MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells.
Neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) have great potential in cell therapy,drug screening and toxicity testing of neural degenerative diseases. However,the molecular regulation of their proliferation and apoptosis,which needs to be revealed before clinical application,is largely unknown. MicroRNA miR-195 is known to be expressed in the brain and is involved in a variety of proapoptosis or antiapoptosis processes in cancer cells. Here,we defined the proapoptotic role of miR-195 in NPCs derived from two independent hESC lines (human embryonic stem cell-derived neural progenitor cells,hESC-NPCs). Overexpression of miR-195 in hESC-NPCs induced extensive apoptotic cell death. Consistently,global transcriptional microarray analyses indicated that miR-195 primarily regulated genes associated with apoptosis in hESC-NPCs. Mechanistically,a small GTP-binding protein ADP-ribosylation factor-like protein 2 (ARL2) was identified as a direct target of miR-195. Silencing ARL2 in hESC-NPCs provoked an apoptotic phenotype resembling that of miR-195 overexpression,revealing for the first time an essential role of ARL2 for the survival of human NPCs. Moreover,forced expression of ALR2 could abolish the cell number reduction caused by miR-195 overexpression. Interestingly,we found that paraquat,a neurotoxin,not only induced apoptosis but also increased miR-195 and reduced ARL2 expression in hESC-NPCs,indicating the possible involvement of miR-195 and ARL2 in neurotoxin-induced NPC apoptosis. Notably,inhibition of miR-195 family members could block neurotoxin-induced NPC apoptosis. Collectively,miR-195 regulates cell apoptosis in a context-dependent manner through directly targeting ARL2. The finding of the critical role of ARL2 for the survival of human NPCs and association of miR-195 and ARL2 with neurotoxin-induced apoptosis have important implications for understanding molecular mechanisms that control NPC survival and would facilitate our manipulation of the neurological pathogenesis.
View Publication
文献
Tagler D et al. (DEC 2013)
Biotechnology and bioengineering 110 12 3258--3268
Supplemented $$MEM/F12-based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels.
Hydrogel-encapsulating culture systems for ovarian follicles support the in vitro growth of secondary follicles from various species including mouse,non-primate human,and human; however,the growth of early stage follicles (primary and primordial) has been limited. While encapsulation maintains the structure of early stage follicles,feeder cell populations,such as mouse embryonic fibroblasts (MEFs),are required to stimulate growth and development. Hence,in this report,we investigated feeder-free culture environments for early stage follicle development. Mouse ovarian follicles were encapsulated within alginate hydrogels and cultured in various growth medium formulations. Initial studies employed embryonic stem cell medium formulations as a tool to identify factors that influence the survival,growth,and meiotic competence of early stage follicles. The medium formulation that maximized survival and growth was identified as $$MEM/F12 supplemented with fetuin,insulin,transferrin,selenium,and follicle stimulating hormone (FSH). This medium stimulated the growth of late primary (average initial diameter of 80 µm) and early secondary (average initial diameter of 90 µm) follicles,which developed antral cavities and increased to terminal diameters exceeding 300 µm in 14 days. Survival ranged from 18% for 80 µm follicles to 36% for 90 µm follicles. Furthermore,80% of the oocytes from surviving follicles with an initial diameter of 90-100 µm underwent germinal vesicle breakdown (GVBD),and the percentage of metaphase II (MII) eggs was 50%. Follicle/oocyte growth and GVBD/MII rates were not significantly different from MEF co-culture. Survival was reduced relative to MEF co-culture,yet substantially increased relative to the control medium that had been previously used for secondary follicles. Continued development of culture medium could enable mechanistic studies of early stage folliculogenesis and emerging strategies for fertility preservation.
View Publication
文献
Richard V et al. (SEP 2013)
Cancer letters 338 2 300--316
Multiple drug resistant, tumorigenic stem-like cells in oral cancer.
An in vitro cell line model was established to exemplify tumor stem cell concept in oral cancer. We were able to identify CD147 expressing fractions in SCC172 OSCC cell line with differing Hoechst dye efflux activity and DNA content. In vivo tumorigenic assay revealed three fractions enriched with stem-like cells capable of undergoing mesenchymal transition and a non-tumorigenic fraction. The regeneration potential and transition of one fraction to other imitated the phenotypic switch and functional disparities evidenced during oral tumor progression. Knowledge of these additional stem-like subsets will improve understanding of stem cell based oral epithelial tumor progression from normal to malignant lesions.
View Publication
文献
Zhou X et al. (JUL 2013)
The Journal of clinical investigation 123 7 3084--98
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here,we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide-dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α,which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore,treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys,Pkd1 conditional knockout postnatal kidneys,and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.
View Publication
文献
Wang X et al. (DEC 2013)
Oncogene 32 49 5512--21
PPARγ maintains ERBB2-positive breast cancer stem cells.
Overexpression of the adverse prognostic marker ERBB2 occurs in 30% of breast cancers and is associated with aggressive disease and poor outcomes. Our recent findings have shown that NR1D1 and the peroxisome proliferator-activated receptor-γ (PPARγ)-binding protein (PBP) act through a common pathway in upregulating several genes in the de novo fatty acid synthesis network,which is highly active in ERBB2-positive breast cancer cells. NR1D1 and PBP are functionally related to PPARγ,a well-established positive regulator of adipogenesis and lipid storage. Here,we report that inhibition of the PPARγ pathway reduces the aldehyde dehydrogenase (ALDH)-positive population in ERBB2-positive breast cancer cells. Results from in vitro tumorsphere formation assays demonstrate that the PPARγ antagonists GW9662 and T0070907 decrease tumorsphere formation in ERBB2-positive cells,but not other breast cells. We show that the mechanism by which GW9662 treatment causes a reduction in ALDH-positive population cells is partially due to ROS,as it can be rescued by treatment with N-acetyl-cysteine. Furthermore,global gene expression analyses show that GW9662 treatment suppresses the expression of several lipogenic genes,including ACLY,MIG12,FASN and NR1D1,and the stem-cell related genes KLF4 and ALDH in BT474 cells. Antagonist treatment also decreases the level of acetylation in histone 3 and histone 4 in BT474 cells,compared with MCF7 cells. In vivo,GW9662 pre-treatment inhibits the tumor-seeding ability of BT474 cells. Together,these results show that the PPARγ pathway is critical for the cancer stem cell properties of ERBB2-positive breast cancer cells.
View Publication
文献
Zhang Y et al. (JUN 2013)
Neuron 78 5 785--798
Rapid single-step induction of functional neurons from human pluripotent stem cells
Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome,slow,and variable. Alternatively,human fibroblasts can be directly converted into induced neuronal (iN) cells. However,with present techniques conversion is inefficient,synapse formation is limited,and only small amounts of neurons can be generated. Here,we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin,form mature pre- and postsynaptic specializations,and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples,our approach enables large-scale studies of human neurons for questions such as analyses of human diseases,examination of human-specific genes,and drug screening
View Publication
文献
&Scaron et al. (JUL 2013)
Journal of immunology (Baltimore,Md. : 1950) 191 2 828--36
CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells.
Lymphocyte activation is regulated by costimulatory and inhibitory receptors,of which both B and T lymphocyte attenuator (BTLA) and CD160 engage herpesvirus entry mediator (HVEM). Notably,it remains unclear how HVEM functions with each of its ligands during immune responses. In this study,we show that HVEM specifically activates CD160 on effector NK cells challenged with virus-infected cells. Human CD56(dim) NK cells were costimulated specifically by HVEM but not by other receptors that share the HVEM ligands LIGHT,Lymphotoxin-α,or BTLA. HVEM enhanced human NK cell activation by type I IFN and IL-2,resulting in increased IFN-γ and TNF-α secretion,and tumor cell-expressed HVEM activated CD160 in a human NK cell line,causing rapid hyperphosphorylation of serine kinases ERK1/2 and AKT and enhanced cytolysis of target cells. In contrast,HVEM activation of BTLA reduced cytolysis of target cells. Together,our results demonstrate that HVEM functions as a regulator of immune function that activates NK cells via CD160 and limits lymphocyte-induced inflammation via association with BTLA.
View Publication
文献
Smart CE et al. ( 2013)
PloS one 8 6 e64388
In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity.
Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines,immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere,adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity,consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes,although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly,self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures,suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia,including sorted luminal (MUC1(+)) and basal/myoepithelial (CD10(+)) cells revealed distinct luminal-like,basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype,or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall,cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells,suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally 'enriching' for stem cells,has utility as one of a suite of functional assays that provide a read-out of progenitor activity.
View Publication
文献
McClements L et al. (JUL 2013)
Clinical cancer research : an official journal of the American Association for Cancer Research 19 14 3881--3893
Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway.
PURPOSE FK506-binding protein like (FKBPL) and its peptide derivative,AD-01,have already shown tumor growth inhibition and CD44-dependent antiangiogenic activity. Here,we explore the ability of AD-01 to target CD44-positive breast cancer stem cells (BCSC). EXPERIMENTAL DESIGN Mammosphere assays and flow cytometry were used to analyze the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anticancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75),primary patient samples,and xenografts. Delays in tumor initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays,quantitative PCR (qPCR),and immunofluorescence. RESULTS AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere-forming efficiency and ESA(+)/CD44(+)/CD24(-) or aldehyde dehydrogenase (ALDH)(+) cell subpopulations in vitro and tumor initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism seems to be due to AD-01-mediated BCSC differentiation shown by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers,Nanog,Oct4,and Sox2,were also significantly reduced. Furthermore,we showed additive inhibitory effects when AD-01 was combined with the Notch inhibitor,DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy-induced enrichment in BCSCs. Finally,FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs,highlighting a role for endogenous FKBPL in stem cell signaling. CONCLUSIONS AD-01 has dual antiangiogenic and anti-BCSC activity,which will be advantageous as this agent enters clinical trial.
View Publication
文献
Liberski AR et al. (JUL 2013)
Journal of Proteome Research 12 7 3233--3245
Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture
Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics,and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is,however,traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer,and as a result,possible xenogeneic contamination,contribution of unlabeled amino acids by the feeders,interlaboratory variability of MEF preparation,and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used,chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison,WI) licensed to STEMCELL Technologies (Vancouver,Canada)]. This medium,together with adjustments to the culturing protocol,facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.
View Publication