Lee M-YM-O et al. (AUG 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 35 E3281--90
Inhibition of pluripotent stem cell-derived teratoma formation by small molecules.
The future of safe cell-based therapy rests on overcoming teratoma/tumor formation,in particular when using human pluripotent stem cells (hPSCs),such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation,complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile,we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e.,survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors,leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular,a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g.,quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast,differentiated cell types (e.g.,dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together,these results provide the proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy."
View Publication
文献
Kearns NA et al. (NOV 2013)
Stem Cell Research 11 3 1003--1012
Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules
Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus,salivary glands,lung,thymus,parathyroid and thyroid. Despite its importance,reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here,we describe a novel protocol to derive a subdomain of AFE,identified by expression of Pax9,from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells,which when transplanted in vivo,can form several distinct complex AFE-derived epithelia,including mucosal glands and stratified squamous epithelium. Finally,we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus,this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders.
View Publication
文献
Herreros-Villanueva M et al. ( 2013)
Oncogenesis 2 e61
SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.
SOX2 (Sex-determining region Y (SRY)-Box2) has important functions during embryonic development and is involved in cancer stem cell (CSC) maintenance,in which it impairs cell growth and tumorigenicity. However,the function of SOX2 in pancreatic cancer cells is unclear. The objective of this study was to analyze SOX2 expression in human pancreatic tumors and determine the role of SOX2 in pancreatic cancer cells regulating CSC properties. In this report,we show that SOX2 is not expressed in normal pancreatic acinar or ductal cells. However,ectopic expression of SOX2 is observed in 19.3% of human pancreatic tumors. SOX2 knockdown in pancreatic cancer cells results in cell growth inhibition via cell cycle arrest associated with p21(Cip1) and p27(Kip1) induction,whereas SOX2 overexpression promotes S-phase entry and cell proliferation associated with cyclin D3 induction. SOX2 expression is associated with increased levels of the pancreatic CSC markers ALDH1,ESA and CD44. Importantly,we show that SOX2 is enriched in the ESA(+)/CD44(+) CSC population from two different patient samples. Moreover,we show that SOX2 directly binds to the Snail,Slug and Twist promoters,leading to a loss of E-Cadherin and ZO-1 expression. Taken together,our findings show that SOX2 is aberrantly expressed in pancreatic cancer and contributes to cell proliferation and stemness/dedifferentiation through the regulation of a set of genes controlling G1/S transition and epithelial-to-mesenchymal transition (EMT) phenotype,suggesting that targeting SOX2-positive cancer cells could be a promising therapeutic strategy.
View Publication
文献
Akizu N et al. (AUG 2013)
Cell 154 3 505--517
AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem Disorder
Purine biosynthesis and metabolism,conserved in all living organisms,is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation,which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. ?? 2013 Elsevier Inc.
View Publication
文献
Yang L et al. (OCT 2013)
Nucleic Acids Research 41 19 9049--9061
Optimization of scarless human stem cell genome editing
Efficient strategies for precise genome editing in human-induced pluripotent cells (hiPSCs) will enable sophisticated genome engineering for research and clinical purposes. The development of programmable sequence-specific nucleases such as Transcription Activator-Like Effectors Nucleases (TALENs) and Cas9-gRNA allows genetic modifications to be made more efficiently at targeted sites of interest. However,many opportunities remain to optimize these tools and to enlarge their spheres of application. We present several improvements: First,we developed functional re-coded TALEs (reTALEs),which not only enable simple one-pot TALE synthesis but also allow TALE-based applications to be performed using lentiviral vectors. We then compared genome-editing efficiencies in hiPSCs mediated by 15 pairs of reTALENs and Cas9-gRNA targeting CCR5 and optimized ssODN design in conjunction with both methods for introducing specific mutations. We found Cas9-gRNA achieved 7-8× higher non-homologous end joining efficiencies (3%) than reTALENs (0.4%) and moderately superior homology-directed repair efficiencies (1.0 versus 0.6%) when combined with ssODN donors in hiPSCs. Using the optimal design,we demonstrated a streamlined process to generated seamlessly genome corrected hiPSCs within 3 weeks.
View Publication
文献
Ma L and Jiang T (OCT 2013)
Oncology reports 30 4 1899--1905
Clinical implications of Ezrin and CD44 co‑expression in breast cancer.
The aim of the present study was to investigate the expression status and clinical implications of the stem cell genes Ezrin and CD44 in breast cancers. Expression of the Ezrin protein in CD44+/CD24-/low tumor cells (CSCs) was detected by western blotting. The resulting expression status and the relationship between Ezrin and CD44 were determined in 726 breast cancers using immunohistochemistry staining and immunofluorescence double staining. Subsequently,the relationship between Ezrin and CD44 protein co-expression and clinicopathological parameters and prognosis was determined. The Ezrin protein was expressed at a higher level in CSCs when compared to that in the control cells and was related to the resistance of CSCs to chemotherapy. The Ezrin and CD44 proteins were co-expressed in the co-immunoprecipitation (Co-IP) test. Ezrin and CD44 co-expression was observed in 235 (32.37%) of the 726 cases examined. After universal analysis and multivariate analysis,histological type,lymph node metastasis,triple-negative breast cancer,TNM stage and distant metastasis were verified as related to Ezrin and CD44 co-expression (P=0.011,0.006,0.001,0.011 and 0.001,respectively). A survival analysis revealed that Ezrin and CD44 co-expression was associated with a poorer prognosis (36.91 vs. 81.54%,P=0.001). After running Cox regression,the factors of age,tumor size,lymph node metastasis,triple-negative tumor status,TNM stage,distant metastasis and Ezrin and CD44 co-expression were shown to be independent prognostic factors of breast cancer. The co-expression of Ezrin and CD44 may be a new biomarker for evaluating the progression and chemotherapy sensitivity of breast cancer.
View Publication
文献
Kim J et al. (NOV 2013)
Stem Cell Research 11 3 978--989
Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons
Human embryonic stem cells (hESCs) are emerging as an attractive alternative source for cell replacement therapy since the cells can be expanded in culture indefinitely and differentiated into any cell types in the body. In order to optimize cell-to-cell interaction,cell proliferation and differentiation into specific lineages as well as tissue organization,it is important to provide a microenvironment for the hESCs which mimics the stem cell niche. One approach is to provide a three-dimensional (3D) environment such as encapsulation. We present an approach to culture and differentiate hESCs into midbrain dopamine (mdDA) neurons in a 3D microenvironment using alginate microcapsules for the first time. A detailed gene and protein expression analysis during neuronal differentiation showed an increased gene and protein expression of various specific DA neuronal markers,particularly tyrosine hydroxylase (TH) by textgreater100 folds after 2weeks and at least 50% higher expression after 4weeks respectively,compared to cells differentiated under conventional two-dimensional (2D) platform. The encapsulated TH+ cells co-expressed mdDA neuronal markers,forkhead box protein A-2 (FOXA2) and pituitary homeobox-3 (PITX3) after 4weeks and secreted approximately 60pg/ml/106 cells higher DA level when induced. We propose that the 3D platform facilitated an early onset of DA neuronal generation compared to that with conventional 2D system which also secretes more DA under potassium-induction. It is a very useful model to study the proliferation and directed differentiation of hESCs to various lineages,particularly to mdDA neurons. This 3D system also allows the separation of feeder cells from hESCs during the process of differentiation and also has potential for immune-isolation during transplantation studies. ?? 2013 Elsevier B.V.
View Publication
文献
Malik J et al. (NOV 2013)
Haematologica 98 11 1778--1787
Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts
Primitive erythroid cells,the first red blood cells produced in the mammalian embryo,are necessary for embryonic survival. Erythropoietin and its receptor EpoR,are absolutely required for survival of late-stage definitive erythroid progenitors in the fetal liver and adult bone marrow. Epo- and Epor-null mice die at E13.5 with a lack of definitive erythrocytes. However,the persistence of circulating primitive erythroblasts raises questions about the role of erythropoietin/EpoR in primitive erythropoiesis. Using Epor-null mice and a novel primitive erythroid 2-step culture we found that erythropoietin is not necessary for specification of primitive erythroid progenitors. However,Epor-null embryos develop a progressive,profound anemia by E12.5 as primitive erythroblasts mature as a synchronous cohort. This anemia results from reduced primitive erythroblast proliferation associated with increased p27 expression,from advanced cellular maturation,and from markedly elevated rates of apoptosis associated with an imbalance in pro- and anti-apoptotic gene expression. Both mouse and human primitive erythroblasts cultured without erythropoietin also undergo accelerated maturation and apoptosis at later stages of maturation. We conclude that erythropoietin plays an evolutionarily conserved role in promoting the proliferation,survival,and appropriate timing of terminal maturation of primitive erythroid precursors.
View Publication
文献
Burkhardt MF et al. (SEP 2013)
Molecular and Cellular Neuroscience 56 355--364
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
View Publication
文献
Awe JP et al. (JUL 2013)
Stem cell research & therapy 4 4 87
Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status
INTRODUCTION: The reprogramming of a patient's somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming,however,represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA),an excisable lentiviral reprogramming vector,provides,in our hands,the most consistent reprogramming approach that addresses this safety concern. Nevertheless,most viral integrations occur in genes,and exactly how the integration,epigenetic reprogramming,and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known. METHODS: In this study,we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry,karyotyping and teratoma formation,and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions. RESULTS: We found that a STEMCCA-derived iPSC line that contains a single integration,found to be located in an intronic location in an actively transcribed gene,PRPF39,displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs,differentiated them into multiple clinically relevant cell types (including oligodendrocytes,hepatocytes,and cardiomyocytes),and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status. CONCLUSION: For the first time,these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and,in light of the limited availability of current good manufacturing practice cellular manufacturing facilities,highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.
View Publication
文献
Felfly H and Klein OD (JUL 2013)
Scientific Reports 3 2277
Sprouty genes regulate proliferation and survival of human embryonic stem cells.
Sprouty (Spry) genes encode negative regulators of receptor tyrosine kinase (RTK) signaling,which plays important roles in human embryonic stem cells (hESCs). SPRY2 and SPRY4 are the two most highly expressed Sprouty family members in hESCs,suggesting that they may influence self-renewal. To test this hypothesis,we performed siRNA-mediated knock down (KD) studies. SPRY2 KD resulted in increased cell death and decreased proliferation,whereas SPRY4 KD enhanced survival. In both cases,after KD the cells were able to differentiate into cells of the three germ layers,although after SPRY2 KD there was a tendency toward increased ectodermal differentiation. SPRY2 KD cells displayed impaired mitochondrial fusion and cell membrane damage,explaining in part the increased cell death. These data indicate that Sprouty genes regulate pathways involved in proliferation and cell death in hESCs.
View Publication
文献
Fei S-J et al. ( 2013)
PloS one 8 7 e69104
Targeting mTOR to overcome epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer cells.
AIMS: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic clinical benefits in advanced non-small cell lung cancer (NSCLC); however,resistance remains a serious problem in clinical practice. The present study analyzed mTOR-associated signaling-pathway differences between the EGFR TKI-sensitive and -resistant NSCLC cell lines and investigated the feasibility of targeting mTOR with specific mTOR inhibitor in EGFR TKI resistant NSCLC cells. METHODS: We selected four different types of EGFR TKI-sensitive and -resistant NSCLC cells: PC9,PC9GR,H1650 and H1975 cells as models to detect mTOR-associated signaling-pathway differences by western blot and Immunoprecipitation and evaluated the antiproliferative effect and cell cycle arrest of ku-0063794 by MTT method and flow cytometry. RESULTS: In the present study,we observed that mTORC2-associated Akt ser473-FOXO1 signaling pathway in a basal state was highly activated in resistant cells. In vitro mTORC1 and mTORC2 kinase activities assays showed that EGFR TKI-resistant NSCLC cell lines had higher mTORC2 kinase activity,whereas sensitive cells had higher mTORC1 kinase activity in the basal state. The ATP-competitive mTOR inhibitor ku-0063794 showed dramatic antiproliferative effects and G1-cell cycle arrest in both sensitive and resistant cells. Ku-0063794 at the IC50 concentration effectively inhibited both mTOR and p70S6K phosphorylation levels; the latter is an mTORC1 substrate and did not upregulate Akt ser473 phosphorylation which would be induced by rapamycin and resulted in partial inhibition of FOXO1 phosphorylation. We also observed that EGFR TKI-sensitive and -resistant clinical NSCLC tumor specimens had higher total and phosphorylated p70S6K expression levels. CONCLUSION: Our results indicate mTORC2-associated signaling-pathway was hyperactivated in EGFR TKI-resistant cells and targeting mTOR with specific mTOR inhibitors is likely a good strategy for patients with EGFR mutant NSCLC who develop EGFR TKI resistance; the potential specific roles of mTORC2 in EGFR TKI-resistant NSCLC cells were still unknown and should be further investigated.
View Publication