S. Suthen et al. (nov 2022)
Hepatology (Baltimore,Md.) 76 5 1329--1344
Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC.
BACKGROUND AND AIMS Hypoxia is one of the central players in shaping the immune context of the tumor microenvironment (TME). However,the complex interplay between immune cell infiltrates within the hypoxic TME of HCC remains to be elucidated. APPROACH AND RESULTS We analyzed the immune landscapes of hypoxia-low and hypoxia-high tumor regions using cytometry by time of light,immunohistochemistry,and transcriptomic analyses. The mechanisms of immunosuppression in immune subsets of interest were further explored using in vitro hypoxia assays. Regulatory T cells (Tregs) and a number of immunosuppressive myeloid subsets,including M2 macrophages and human leukocyte antigen-DR isotype (HLA-DRlo ) type 2 conventional dendritic cell (cDC2),were found to be significantly enriched in hypoxia-high tumor regions. On the other hand,the abundance of active granzyme Bhi PD-1lo CD8+ T cells in hypoxia-low tumor regions implied a relatively active immune landscape compared with hypoxia-high regions. The up-regulation of cancer-associated genes in the tumor tissues and immunosuppressive genes in the tumor-infiltrating leukocytes supported a highly pro-tumorigenic network in hypoxic HCC. Chemokine genes such as CCL20 (C-C motif chemokine ligand 20) and CXCL5 (C-X-C motif chemokine ligand 5) were associated with recruitment of both Tregs and HLA-DRlo cDC2 to hypoxia-high microenvironments. The interaction between Tregs and cDC2 under a hypoxic TME resulted in a loss of antigen-presenting HLA-DR on cDC2. CONCLUSIONS We uncovered the unique immunosuppressive landscapes and identified key immune subsets enriched in hypoxic HCC. In particular,we identified a potential Treg-mediated immunosuppression through interaction with a cDC2 subset in HCC that could be exploited for immunotherapies.
View Publication
文献
R. M. van der Sluis et al. (may 2022)
The EMBO journal 41 10 e109622
TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here,we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset,correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFN? and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model,we further demonstrate that pDCs,while not supporting SARS-CoV-2 replication,directly sense the virus and in response produce multiple antiviral (interferons: IFN? and IFN?1) and inflammatory (IL-6,IL-8,CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways,we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs),whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response,but not the IL-6 response,suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.
View Publication
文献
W. Kim et al. (apr 2022)
Nature 604 7904 141--145
Germinal centre-driven maturation of B cell response to mRNA vaccination.
Germinal centres (GC) are lymphoid structures in which B cells acquire affinity-enhancing somatic hypermutations (SHM),with surviving clones differentiating into memory B cells (MBCs) and long-lived bone marrow plasma cells1-5 (BMPCs). SARS-CoV-2 mRNA vaccination induces a persistent GC response that lasts for at least six months in humans6-8. The fate of responding GC B cells as well as the functional consequences of such persistence remain unknown. Here,we detected SARS-CoV-2 spike protein-specific MBCs in 42 individuals who had received two doses of the SARS-CoV-2 mRNA vaccine BNT162b2 six month earlier. Spike-specific IgG-secreting BMPCs were detected in 9 out of 11 participants. Using a combined approach of sequencing the B cell receptors of responding blood plasmablasts and MBCs,lymph node GC B cells and plasma cells and BMPCs from eight individuals and expression of the corresponding monoclonal antibodies,we tracked the evolution of 1,540 spike-specific B cell clones. On average,early blood spike-specific plasmablasts exhibited the lowest SHM frequencies. By contrast,SHM frequencies of spike-specific GC B cells increased by 3.5-fold within six months after vaccination. Spike-specific MBCs and BMPCs accumulated high levels of SHM,which corresponded with enhanced anti-spike antibody avidity in blood and enhanced affinity as well as neutralization capacity of BMPC-derived monoclonal antibodies. We report how the notable persistence of the GC reaction induced by SARS-CoV-2 mRNA vaccination in humans culminates in affinity-matured long-term antibody responses that potently neutralize the virus.
View Publication
文献
D. Li et al. ( 2022)
Theranostics 12 3 1148--1160
A T-cell independent universal cellular therapy strategy through antigen depletion.
Rationale: T cell therapeutic strategy using CD19-targeting chimeric antigen receptor (CAR) is a revolutionary,novel,and successful treatment for B-cell malignancies. However,the dependency on T-cell mediated cytotoxicity restricts CAR-T therapy as a patient-specific individualized therapy with severe side effects,such as cytokine release syndrome (CRS). Whether a non-T-cell based universal cellular therapy can substitute CAR-T therapy is largely unknown. Methods: Various artificial antigen-recognizing cells were prepared to determine whether non-T-cell-derived CD19-scFv bearing effector cells could cause target cell death. A universal strategy for CRS-free cellular therapeutics was proposed,utilizing artificial antigen-recognizing cells (AARC),which can be manufactured universally and routinely as off-the-shelf" mesenchymal stromal cells (MSCs) or other types of non-autologous cells expressing anergic CARs. Results: We demonstrated that T-lymphocytic and non-lymphocytic cells could cause CD19 internalization and subsequent depletion when armed with a CD19-recognizing moiety. This CD19 antigen depletion could efficiently induce T-cell independent apoptosis in target cancer cells whose survival depends on CD19 expression suggesting that CD19 antigen depletion constitutes a crucial tumor destroying mechanism for CD19-CAR-T especially for its long-term efficacy. Conclusion: Our results uncovered an unrecognized CAR-T cytotoxicity and antigen loss mechanism and provided new insights into a shift from unique patient-specific autologous therapeutics to universal and standardized allogeneic treatment."
View Publication
文献
P. J. Eggenhuizen et al. ( 2022)
Frontiers in immunology 13 821595
Heterologous Immunity Between SARS-CoV-2 and Pathogenic Bacteria.
Heterologous immunity,when the memory T cell response elicited by one pathogen recognizes another pathogen,has been offered as a contributing factor for the high variability in coronavirus disease 2019 (COVID-19) severity outcomes. Here we demonstrate that sensitization with bacterial peptides can induce heterologous immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) derived peptides and that vaccination with the SARS-CoV-2 spike protein can induce heterologous immunity to bacterial peptides. Using in silico prediction methods,we identified 6 bacterial peptides with sequence homology to either the spike protein or non-structural protein 3 (NSP3) of SARS-CoV-2. Notwithstanding the effects of bystander activation,in vitro co-cultures showed that all individuals tested (n=18) developed heterologous immunity to SARS-CoV-2 peptides when sensitized with the identified bacterial peptides. T cell recall responses measured included cytokine production (IFN-$\gamma$,TNF,IL-2),activation (CD69) and proliferation (CellTrace). As an extension of the principle of heterologous immunity between bacterial pathogens and COVID-19,we tracked donor responses before and after SARS-CoV-2 vaccination and measured the cross-reactive T cell responses to bacterial peptides with similar sequence homology to the spike protein. We found that SARS-CoV-2 vaccination could induce heterologous immunity to bacterial peptides. These findings provide a mechanism for heterologous T cell immunity between common bacterial pathogens and SARS-CoV-2,which may explain the high variance in COVID-19 outcomes from asymptomatic to severe. We also demonstrate proof-of-concept that SARS-CoV-2 vaccination can induce heterologous immunity to pathogenic bacteria derived peptides.
View Publication
文献
Y. S. Park et al. (mar 2022)
Biochemistry and biophysics reports 29 101214
Enhancement of proliferation of human umbilical cord blood-derived CD34+ hematopoietic stem cells by a combination of hyper-interleukin-6 and small molecules.
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB-HSCs) in transplantation,however,is the low numbers of HSCs in a unit of cord blood. To overcome this limitation,various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study,we investigated a synergistic effect of the combination of HIL-6,SR1,and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1,UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus,SR1,UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation.
View Publication
文献
P. Singh et al. (feb 2022)
Stem cell research & therapy 13 1 60
Additional evidence to support OCT-4 positive VSELs and EnSCs as the elusive tissue-resident stem/progenitor cells in adult mice uterus.
OBJECTIVE True identity and specific set of markers to enrich endometrial stem cells still remains elusive. Present study was undertaken to further substantiate that very small embryonic-like stem cells (VSELs) are the true and elusive stem cells in adult mice endometrium. METHODS This was achieved by undertaking three sets of experiments. Firstly,SSEA-1+ and Oct-4??+??positive VSELs,sorted from GFP mice,were transplanted into the uterine horns of wild-type Swiss mice and GFP uptake was studied within the same estrus cycle. Secondly,uterine lumen was scratched surgically and OCT-4 expressing stem/progenitor cells were studied at the site of injury after 24-72 h. Thirdly,OCT-4????expression was studied in the endometrium and myometrium of adult mice after neonatal exposure to estradiol (20 µg/pup/day on days 5-7 after birth). RESULTS GFP??+??ve VSELs expressing SSEA-1 and Oct-4 engrafted and differentiated into the epithelial cells lining the lumen as well as the glands during the estrus stage when maximum remodeling occurs. Mechanical scratching activated tissue-resident,nuclear OCT-4 positive VSELs and slightly bigger 'progenitors' endometrial stem cells (EnSCs,cytoplasmic OCT-4) which underwent clonal expansion and further differentiated into luminal and glandular epithelial cells. Neonatal exposure to endocrine disruption resulted in increased numbers of OCT-4 positive VSELs/EnSCs in adult endometrium. DISCUSSION Results support the presence of functionally active VSELs in adult endometrium. VSELs self-renew and give rise to EnSCs that further differentiate into epithelial cells under normal physiological conditions. Also,VSELs are vulnerable to endocrine insults. To conclude VSELs are true and elusive uterine stem cells that maintain life-long uterine homeostasis and their dysregulation may result in various pathologies.
View Publication
文献
J. Mena et al. ( 2021)
Frontiers in immunology 12 816930
Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55-IL6ST Gene Region in Immature Dendritic Cells.
Intronic single-nucleotide polymorphisms (SNPs) in the ANKRD55 gene are associated with the risk for multiple sclerosis (MS) and rheumatoid arthritis by genome-wide association studies (GWAS). The risk alleles have been linked to higher expression levels of ANKRD55 and the neighboring IL6ST (gp130) gene in CD4+ T lymphocytes of healthy controls. The biological function of ANKRD55,its role in the immune system,and cellular sources of expression other than lymphocytes remain uncharacterized. Here,we show that monocytes gain capacity to express ANKRD55 during differentiation in immature monocyte-derived dendritic cells (moDCs) in the presence of interleukin (IL)-4/granulocyte-macrophage colony-stimulating factor (GM-CSF). ANKRD55 expression levels are further enhanced by retinoic acid agonist AM580 but downregulated following maturation with interferon (IFN)-$\gamma$ and lipopolysaccharide (LPS). ANKRD55 was detected in the nucleus of moDC in nuclear speckles. We also analyzed the adjacent IL6ST,IL31RA,and SLC38A9 genes. Of note,in healthy controls,MS risk SNP genotype influenced ANKRD55 and IL6ST expression in immature moDC in opposite directions to that in CD4+ T cells. This effect was stronger for a partially correlated SNP,rs13186299,that is located,similar to the main MS risk SNPs,in an ANKRD55 intron. Upon analysis in MS patients,the main GWAS MS risk SNP rs7731626 was associated with ANKRD55 expression levels in CD4+ T cells. MoDC-specific ANKRD55 and IL6ST mRNA levels showed significant differences according to the clinical form of the disease,but,in contrast to healthy controls,were not influenced by genotype. We also measured serum sgp130 levels,which were found to be higher in homozygotes of the protective allele of rs7731626. Our study characterizes ANKRD55 expression in moDC and indicates monocyte-to-dendritic cell (Mo-DC) differentiation as a process potentially influenced by MS risk SNPs.
View Publication
文献
A. Bhattacharyya et al. (mar 2022)
American journal of physiology. Lung cellular and molecular physiology 322 3 L495--L502
IL10 trains macrophage profibrotic function after lung injury.
Cx3cr1+ monocyte-derived macrophages (moMacs) are recruited to tissues after injury and are known to have profibrotic effects,but the cell-cell interactions and specific pathways that regulate this polarization and function are incompletely understood. Here we investigate the role of moMac-derived Pdgfa in bleomycin-induced lung fibrosis in mice. Deletion of Pdgfa with Cx3cr1-CreERT2 decreased bleomycin-induced lung fibrosis. Among a panel of in vitro macrophage polarizing stimuli,robust induction of Pdgfa was noted with IL10 in both mouse and human moMacs. Likewise,analysis of single-cell data revealed high expression of the receptor IL10RA in moMacs from human fibrotic lungs. Studies with IL10-GFP mice revealed that IL10-expressing cells were increased after injury in mice and colocalized with moMacs. Notably,deletion of IL10ra with Csf1r-Cre: IL10ra fl/fl mice decreased both Pdgfa expression in moMacs and lung fibrosis. Taken together,these findings reveal a novel,IL10-dependent mechanism of macrophage polarization leading to fibroblast activation after injury.
View Publication
文献
E. Lin-Shiao et al. (feb 2022)
Nucleic acids research 50 3 1256--1268
CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells.
DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures,where long single-stranded DNA is folded into a compact nanostructure,present an attractive approach to package genes; however,effective delivery of genetic material into cell nuclei has remained a critical challenge. Here,we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR-Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore,our study validates virus-like particles as an efficient method of DNA nanostructure delivery,opening the possibility of delivering nanostructures in vivo to specific cell types. Together,these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates,exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions,such as biosensing,into cell nuclei.
View Publication
文献
M. G. Booty et al. (feb 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 4 929--940
Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8+ T Cell Responses with Antitumor Activity.
CD8+ T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8+ T cell responses,therapeutic approaches to generate Ag-specific CD8+ T cell responses have had limited success. Here,we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8+ T cells by diverse cell types. In murine dendritic cells (DCs),squeezed DCs were ˆ¼1000-fold more potent at eliciting CD8+ T cell responses than DCs cross-presenting the same amount of protein Ag. The approach also enabled engineering of less conventional APCs,such as T cells,for effective priming of CD8+ T cells in vitro and in vivo. Mixtures of immune cells,such as murine splenocytes,also elicited CD8+ T cell responses in vivo when squeezed with Ag. We demonstrate that squeezing enables effective MHC class I presentation by human DCs,T cells,B cells,and PBMCs and that,in clinical scale formats,the system can squeeze up to 2 billion cells per minute. Using the human papillomavirus 16 (HPV16) murine model,TC-1,we demonstrate that squeezed B cells,T cells,and unfractionated splenocytes elicit antitumor immunity and correlate with an influx of HPV-specific CD8+ T cells such that >80% of CD8s in the tumor were HPV specific. Together,these findings demonstrate the potential of cytosolic Ag delivery to drive robust CD8+ T cell responses and illustrate the potential for an autologous cell-based vaccine with minimal turnaround time for patients.
View Publication
文献
R. Sakemura et al. (jun 2022)
Blood 139 26 3708--3721
Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma.
Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses,which led to a recent US Food and Drug Administration approval. Despite the success of this therapy,durable remissions continue to be low,and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models,we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7,which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition,CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.
View Publication