Y. Inoue et al. (Oct 2025)
Acta Neuropathologica 150 1
Impact of APOE on cerebrovascular lipid profile in Alzheimer’s disease
Disturbances within the cerebrovascular system substantially contribute to the pathogenesis of age-related cognitive impairment and Alzheimer’s disease (AD). Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-β (Aβ) in the leptomeningeal and cortical arteries and is highly prevalent in AD,affecting over 90% of cases. While the ε4 allele of apolipoprotein E ( APOE ) represents the strongest genetic risk factor for AD,it is also associated with cerebrovascular dysregulations. APOE plays a crucial role in brain lipid transport,particularly in the trafficking of cholesterol and phospholipids. Lipid metabolism is increasingly recognized as a critical factor in AD pathogenesis. However,the precise mechanism by which APOE influences cerebrovascular lipid signatures in AD brains remains unclear. In this study,we conducted non-targeted lipidomics on cerebral vessels isolated from the middle temporal cortex of 89 postmortem human AD brains,representing varying degrees of CAA and different APOE genotypes: APOE ε2/ε3 (N = 9),APOE ε2/ε4 (N = 14),APOE ε3/ε3 (N = 21),APOE ε3/ε4 (N = 23),and APOE ε4/ε4 (N = 22). Lipidomics detected 10 major lipid classes with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) being the most abundant lipid species. While we observed a positive association between age and total acyl-carnitine (CAR) levels (p = 0.0008),the levels of specific CAR subclasses were influenced by the APOE ε4 allele. Notably,APOE ε4 was associated with increased PE (p = 0.049) and decreased sphingomyelin (SM) levels (p = 0.028) in the cerebrovasculature. Furthermore,cerebrovascular Aβ40 and Aβ42 levels showed associations with sphingolipid levels including SM (p = 0.0079) and ceramide (CER) (p = 0.024). Weighted correlation network analysis revealed correlations between total tau and phosphorylated tau and lipid clusters enriched for PE plasmalogen and lysoglycerophospholipids. Taken together,our results suggest that cerebrovascular lipidomic profiles offer novel insights into the pathogenic mechanisms of AD,with specific lipid alterations potentially serving as biomarkers or therapeutic targets for AD. The online version contains supplementary material available at 10.1007/s00401-025-02949-5.
View Publication
M. R. Shoeb et al. (Aug 2025)
Communications Biology 8
A stem cell differentiation model reveals two alternative fates in CBFA2T3::GLIS2-driven acute megakaryoblastic leukemia initiation
The CBFA2T3::GLIS2 (CG) fusion protein causes aggressive pediatric acute megakaryoblastic leukemia (AMKL). Although dysregulated molecular pathways in AMKL have been identified,their role in early pre-leukemic transformation remains poorly understood. We developed a disease model utilizing genetically modified human induced pluripotent stem cells (hiPSC) physiologically and conditionally expressing CG. Using in vitro differentiation and single-cell multi-omics,we captured the impact of oncogene activity on gene-regulatory networks during hematopoiesis. We discovered that CG interferes with myelopoiesis through two alternative routes: by locking aberrant megakaryocyte progenitors (aMKP) in a proliferative state,or by impeding differentiation of aberrant megakaryocytes (aMK). Transcriptionally and functionally,aMKPs mimic CG-AMKL cells and establish a self-renewal network with co-factors GATA2,ERG,and DLX3. In contrast,aMKs partially sustain regulators of MK maturation but fail to complete differentiation due to repression of factors like NFE2,SPI1,GATA1 and LYL1. These insights may inform new strategies for targeting AMKL cell states. Subject terms: Acute myeloid leukaemia,Cancer models
View Publication
N. J. Smandzich et al. (Sep 2025)
Cells 14 17
Proteomics of Patient-Derived Striatal Medium Spiny Neurons in Multiple System Atrophy
The rare and rapidly progressive neurodegenerative disease multiple system atrophy (MSA) mainly affects the striatum and other subcortical brain regions. In this atypical Parkinsonian syndrome,the protein alpha-synuclein aggregates and misfolds in neurons as well as glial cells and is released in elevated amounts by hypoexcitable neurons. Mitochondrial dysregulation affects the biosynthesis of coenzyme Q10 and the activity of the respiratory chain,as shown in an induced pluripotent stem cell (iPSC) model. Proteome studies of cerebrospinal fluid and brain tissue from MSA patients yielded inconsistent results regarding possible protein changes due to small and combined groups of atypical Parkinsonian syndromes. In this study,we analysed the cellular proteome of MSA patient-derived striatal GABAergic medium spiny neurons. We observed 25 significantly upregulated and 16 significantly downregulated proteins in MSA cell lines compared to matched healthy controls. Various protein types involved in diverse molecular functions and cellular processes emphasise the multifaceted pathomechanisms of MSA. These data could contribute to the development of novel disease-modifying treatment strategies for MSA patients.
View Publication
L. M. Bedford et al. (Oct 2025)
Alzheimer's & Dementia 21 10
Alzheimer's disease–associated PLCG2 variants alter microglial state and function in human induced pluripotent stem cell–derived microglia‐like cells
Variants of phospholipase C gamma 2 (PLCG2),a key microglial immune signaling protein,are genetically linked to Alzheimer's disease (AD) risk. Understanding how PLCG2 variants alter microglial function is critical for identifying mechanisms that drive neurodegeneration or resiliency in AD. Induced pluripotent stem cell (iPSC) –derived microglia carrying the protective PLCG2 P522R or risk‐conferring PLCG2 M28L variants,or loss of PLCG2,were generated to ascertain the impact on microglial transcriptome and function. Protective PLCG2 P522R microglia showed significant transcriptomic similarity to isogenic controls. In contrast,risk‐conferring PLCG2 M28L microglia shared similarities with PLCG2 KO microglia,with functionally reduced TREM2 expression,blunted inflammatory responses,and increased proliferation and cell death. Uniquely,PLCG2 P522R microglia showed elevated cytokine secretion after lipopolysaccharide (LPS) stimulation and were protected from apoptosis. These findings demonstrate that PLCG2 variants drive distinct microglia transcriptomes that influence microglial functional responses that could contribute to AD risk and protection. Targeting PLCG2‐mediated signaling may represent a powerful therapeutic strategy to modulate neuroinflammation. The impact of Alzheimer's disease protective‐ and risk‐associated variants of phospholipase C gamma 2 (PLCG2) on the transcriptome and function of induced pluripotent stem cell (iPSC) –derived microglia was investigated. PLCG2 risk variant microglia exhibited a basal transcriptional profile similar to PLCG2‐deficient microglia but significantly different from isotype control and the transcriptionally similar PLCG2 protective variant microglia. PLCG2 risk variant and PLCG2‐deficient microglia show decreased levels of triggering receptor expressed on myeloid cells 2 (TREM2). The differential transcriptional pathways of protective and risk‐associated PLCG2 variant microglia functionally affect proliferation,apoptosis,and immune response. Protective PLCG2 microglia show resilience to apoptosis and increased cytokine/chemokine secretion upon exposure to lipopolysaccharide (LPS).
View Publication
A. Mostofinejad et al. (Aug 2025)
PLOS Computational Biology 21 8
In silico modeling of directed differentiation of induced pluripotent stem cells to definitive endoderm
Differentiation of embryonic stem cells and induced pluripotent stem cells (iPSCs) into endoderm derivatives,including thyroid,thymus,lungs,liver,and pancreas,has broad implications for disease modeling and therapy. We utilize and expand a model development approach previously outlined by the authors to construct a model for the directed differentiation of iPSCs into definitive endoderm (DE). Assuming discrete intermediate stages in the differentiation process with a homogeneous population in each stage,three lineage models with two,three,and four populations and three growth models are constructed. Additionally,three models for error distribution are defined,resulting in a total of 27 models. Experimental data obtained in vitro are used for model calibration,model selection,and final validation. Model selection suggests that no transitory state during differentiation expresses the DE biomarkers CD117 and CD184,a finding corroborated by existing literature. Additionally,space-limited growth models,such as logistic and Gompertz growth,outperform exponential growth. Validation of the inferred model with leave-out data results in prediction errors of 26.4%. Using the inferred model,it is predicted that the optimal differentiation period is between 1.9 and 2.4 days,plating populations closer to 300 000 cells per well result in the highest yield efficiency,and that iPSC differentiation outpaces the DE proliferation as the main driver of the population dynamics. We also demonstrate that the model can predict the effect of growth modulators on cell population dynamics. Our model serves as a valuable tool for optimizing differentiation protocols,providing insights into developmental biology.
View Publication
M. Y. Chun et al. (Sep 2025)
Alzheimer's & Dementia 21 9
Polygenic risk score of Alzheimer's disease is associated with cognitive trajectories and phenotypes of cerebral organoids
INTRODUCTIONPolygenic risk score (PRS) identifies individuals at high genetic risk for Alzheimer's disease (AD),but its utility in predicting cognitive trajectories and AD pathologies remains unclear. We optimized PRS (optPRS) for AD,investigated its association with cognitive trajectories and AD phenotypes of cerebral organoids.METHODSUsing genome‐wide association study (GWAS) summary statistics from a European population,we developed optPRS to predict AD in Korean individuals (n = 1634). We analyzed the association between optPRS and cognitive trajectories (n = 771). We generated induced pluripotent stem cell–derived cerebral organoids from patients with high (n = 3) and low (n = 4) optPRS to evaluate amyloid beta (Aβ) and phosphorylated tau (p‐tau) levels.RESULTSOptPRS predicted AD dementia and Aβ positivity,independent of apolipoprotein E (APOE). Higher optPRSs correlated with rapid cognitive decline. Cerebral organoids from the high optPRS group exhibited increased Aβ insolubility and p‐tau levels.CONCLUSIONOptPRS predicted cognitive decline and AD phenotypes of cerebral organoids,supporting its use in risk assessments and drug‐screening platform.Highlights
Optimized polygenic risk scores (optPRSs) improve the prediction of Alzheimer's disease (AD) dementia and amyloid beta positivity (Aβ+).High optPRS is associated with faster cognitive decline,particularly in Aβ+.Induced pluripotent stem cell (iPSC)–derived cerebral organoids from high optPRSs show high Aβ insolubility and phosphorylated tau (p‐tau).PRS genetic risk stratification provides insight into AD progression and pathology.
View Publication
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects communication,social interaction,and behavior. Calcium (Ca2+) signaling dysregulation has been frequently highlighted in genetic studies as a contributing factor to aberrant developmental processes in ASD. Herein,we used ASD and control induced pluripotent stem cells (iPSCs) to investigate transcriptomic and functional Ca2+ dynamics at various stages of differentiation to cortical neurons. Idiopathic ASD and control iPSC lines underwent the dual SMAD inhibition differentiation protocol to direct their fate toward cortical neurons. Samples from multiple time points along the course of differentiation were processed for bulk RNA sequencing,spanning the following sequential stages: the iPSC stage,neural induction (NI) stage,neurosphere (NSP) stage,and differentiated cortical neuron (Diff) stage. Our transcriptomic analyses suggested that the numbers of Ca2+ signaling-relevant differentially expressed genes between ASD and control samples were higher in the iPSC and Diff stages. Accordingly,samples from the iPSC and Diff stages were processed for Ca2+ imaging studies. Results revealed that iPSC-stage ASD samples displayed elevated maximum Ca2+ levels in response to ATP compared to controls. By contrast,in the Diff stage,ASD neurons showed reduced maximum Ca2+ levels in response to ATP but increased maximum Ca2+ levels in response to KCl and DHPG relative to controls. Considering the distinct functional signaling contexts of these stimuli,this differential profile of receptor- and ionophore-mediated Ca2+ response suggests that aberrant calcium homeostasis underlies the pathophysiology of ASD neurons. Our data provides functional evidence for Ca2+ signaling dysregulation during neurogenesis in idiopathic ASD.
View Publication
J. Chen et al. (Aug 2025)
Journal of Nanobiotechnology 23 3
Targeted neural stem cell-derived extracellular vesicles loaded with Sinomenine alleviate diabetic peripheral neuropathy via WNT5a/TRPV1 pathway modulation
BackgroundDiabetic peripheral neuropathy (DPN) is one of the most prevalent and debilitating complications of diabetes,marked by chronic neuroinflammation,immune dysregulation,and progressive neuronal degeneration. Current treatments offer limited efficacy,largely focusing on symptomatic relief rather than addressing the underlying disease mechanisms. There is a critical need for disease-modifying therapies that target the molecular basis of DPN.ResultsIn this study,we developed a novel targeted nanotherapeutic system—ZH-1c-EVs@SIN—composed of neural stem cell-derived extracellular vesicles (NSC-EVs) modified with the ZH-1c aptamer and loaded with the anti-inflammatory compound sinomenine (SIN). This system was specifically designed to target microglia and inhibit the WNT5a/TRPV1 signaling pathway. Transcriptomic profiling of microglia revealed key gene networks implicated in DPN pathology and responsive to SIN treatment. Functional assays demonstrated that ZH-1c-EVs@SIN facilitated a shift in microglial phenotype from pro-inflammatory M1 to anti-inflammatory M2,significantly reduced inflammatory cytokine expression,and restored levels of neuronal regulatory proteins. Nanoparticle tracking analysis and transmission electron microscopy confirmed optimal vesicle size and morphology,while fluorescence imaging showed efficient uptake by microglia. In vivo studies in a murine model of DPN revealed marked improvements in pain-related behavior and histopathological signs of nerve damage.ConclusionZH-1c-EVs@SIN represents a promising therapeutic strategy for DPN,offering targeted immunomodulation and enhanced neural repair via regulation of the WNT5a/TRPV1 signaling axis. This nano-delivery platform introduces a novel and precise approach to intervening in diabetic neuropathy and may be applicable to other neuroinflammatory conditions.Graphical abstractMechanism of ZH-1c-EVs@SIN Mediating the WNT5a/TRPV1 Pathway to Improve Immune-Inflammatory Homeostasis in the Treatment of DPN in Mice.
Supplementary InformationThe online version contains supplementary material available at 10.1186/s12951-025-03678-3.
View Publication