N. A. du Foss\'e et al. (jun 2022)
Journal of reproductive immunology 151 103500
Impaired immunomodulatory effects of seminal plasma may play a role in unexplained recurrent pregnancy loss: Results of an in vitro study.
BACKGROUND Seminal plasma contains signaling molecules capable of modulating the maternal immune environment to support implantation and pregnancy. Prior studies indicated that seminal plasma induces changes in gene transcription of maternal immune cells. Reduced immune suppressive capacity may lead to pregnancy loss. The aim of this study was to investigate the immunomodulating effects of seminal plasma on T cells and monocytes in the context of recurrent pregnancy loss (RPL). METHODS Female T cells and monocytes were incubated with seminal plasma of 20 males in unexplained RPL couples (RPL males) and of 11 males whose partners had ongoing pregnancies (control males). The effect of seminal plasma on messenger RNA (mRNA) expression of immune cells was measured. Levels of mRNA expression were related to key signaling molecules present in the seminal plasma. Agglomerative hierarchical cluster analysis was performed on seminal plasma expression profiles and on mRNA expression profiles. RESULTS Expression of CD25 and anti-inflammatory IL-10 by female T cells was significantly lower after stimulation with seminal plasma of RPL males compared to control males. Female monocytes treated with seminal plasma of RPL males showed an immune activation signature of relatively elevated HLA-DR expression. Expression of these T cell and monocyte components was particularly correlated with the amounts of TGF-$\beta$ and VEGF in the seminal plasma. CONCLUSION Our findings indicate that seminal plasma has immunomodulating properties on female immune cells compatible with the induction of a more regulatory phenotype,which may be impaired in cases of unexplained RPL.
View Publication
文献
E. Berenice Mart\'inez-Shio et al. (may 2022)
Clinical and experimental immunology 208 1 83--94
Differentiation of circulating monocytes into macrophages with metabolically activated phenotype regulates inflammation in dyslipidemia patients.
Macrophages are mediators of inflammation having an important role in the pathogenesis of cardiovascular diseases. Recently,a pro-inflammatory subpopulation,known as metabolically activated macrophages (MMe),has been described in conditions of obesity and metabolic syndrome where they are known to release cytokines that can promote insulin resistance. Dyslipidemia represents an important feature in metabolic syndrome and corresponds to one of the main modifiable risk factors for the development of cardiovascular diseases. Circulating monocytes can differentiate into macrophages under certain conditions. They correspond to a heterogeneous population,which include inflammatory and anti-inflammatory subsets; however,there is a wide spectrum of phenotypes. Therefore,we decided to investigate whether the metabolic activated monocyte (MoMe) subpopulation is already present under dyslipidemia conditions. Secondly,we assessed whether different levels of cholesterol and triglycerides play a role in the polarization towards the metabolic phenotype (MMe) of macrophages. Our results indicate that MoMe cells are found in both healthy and dyslipidemia patients,with cells displaying the following metabolic phenotype: CD14varCD36+ABCA1+PLIN2+. Furthermore,the percentages of CD14++CD68+CD80+ pro-inflammatory monocytes are higher in dyslipidemia than in healthy subjects. When analysing macrophage differentiation,we observed that MMe percentages were higher in the dyslipidemia group than in healthy subjects. These MMe have the ability to produce high levels of IL-6 and the anti-inflammatory cytokine IL-10. Furthermore,ABCA1 expression in MMe correlates with LDL serum levels. Our study highlights the dynamic contributions of metabolically activated macrophages in dyslipidemia,which may have a complex participation in low-grade inflammation due to their pro- and anti-inflammatory function.
View Publication
文献
D. Wang et al. (jun 2022)
Immunology 166 2 169--184
CTLA4Ig/VISTAIg combination therapy selectively induces CD4+ T cell-mediated immune tolerance by targeting the SOCS1 signaling pathway in porcine islet xenotransplantation.
T cell inhibitory receptors can regulate the proliferation or function of T cells by binding to their ligands and present a unique opportunity to manage destructive immune responses during porcine islet xenotransplantation. We applied ex vivo porcine islet xenotransplantation and in vitro mixed lymphocyte-islet reaction models to assess immune checkpoint receptor expression profiles in recipient T cells,investigated whether CTLA4 or VISTA immunoglobulin (Ig) combination therapy alone could suppress porcine islet xenograft rejection and further analyzed its potential immune tolerance mechanism. Recipient T cells expressed moderate to high levels of CTLA4,PD-1,TIGIT and VISTA,and the frequency of CTLA4+ CD4+,TIGIT+ CD4+,VISTA+ CD4+ and VISTA+ CD8+ T cells was positively correlated with porcine islet xenograft survival time in xenotransplant recipients. Combined treatment with CTLA4Ig and VISTAIg selectively inhibited recipient CD4+ T cell hyper-responsiveness and proinflammatory cytokine production and significantly delayed xenograft rejection. SOCS1 deficiency in CD4+ T cells stimulated by xenogeneic islets facilitated hyper-responsiveness and abolished the suppressive effect of combination therapy on recipient T cell-mediated porcine islet damage in vivo and in vitro. Further mechanistic studies revealed that combined treatment significantly induced SOCS1 expression and inhibited the Jak-STAT signalling pathway in wild-type recipient CD4+ T cells stimulated by xenogeneic islets,whereas SOCS1 deficiency resulted in Jak-STAT signalling pathway activation in recipient CD4+ T cells. We demonstrated a major role for CTLA4 and VISTA as key targets in CD4+ T cell hyper-responsiveness and porcine islet xenograft rejection. The selective inhibition of CD4+ T cell immunity by CTLA4Ig/VISTAIg is based on SOCS1-dependent signalling.
View Publication
文献
Y. Hong et al. (mar 2022)
JCI insight 7 5
Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity.
Therapeutic IL-12 has demonstrated the ability to reduce local immune suppression in preclinical models,but clinical development has been limited by severe inflammation-related adverse events with systemic administration. Here,we show that potent immunologic tumor control of established syngeneic carcinomas can be achieved by i.t. administration of a tumor-targeted IL-12 antibody fusion protein (NHS-rmIL-12) using sufficiently low doses to avoid systemic toxicity. Single-cell transcriptomic analysis and ex vivo functional assays of NHS-rmIL-12-treated tumors revealed reinvigoration and enhanced proliferation of exhausted CD8+ T lymphocytes,induction of Th1 immunity,and a decrease in Treg number and suppressive capacity. Similarly,myeloid cells transitioned toward inflammatory phenotypes and displayed reduced suppressive capacity. Cell type-specific IL-12 receptor-KO BM chimera studies revealed that therapeutic modulation of both lymphoid and myeloid cells is required for maximum treatment effect and tumor cure. Study of single-cell data sets from human head and neck carcinomas revealed IL-12 receptor expression patterns similar to those observed in murine tumors. These results describing the diverse mechanisms underlying tumor-directed IL-12-induced antitumor immunity provide the preclinical rationale for the clinical study of i.t. NHS-IL-12.
View Publication
文献
M. J. Tosiek et al. ( 2022)
Journal of immunology research 2022 9926305
Activation of the Innate Immune Checkpoint CLEC5A on Myeloid Cells in the Absence of Danger Signals Modulates Macrophages' Function but Does Not Trigger the Adaptive T Cell Immune Response.
C-Type lectin receptor 5A (CLEC5A) is a spleen tyrosine kinase- (Syk-) coupled pattern recognition receptor expressed on myeloid cells and involved in the innate immune response to viral and bacterial infections. Activation of the CLEC5A receptor with pathogen-derived antigens leads to a secretion of proinflammatory mediators such as TNF-$\alpha$ and IL-6 that may provoke a systemic cytokine storm,and CLEC5A gene polymorphisms are associated with the severity of DV infection. In addition,the CLEC5A receptor was mentioned in the context of noninfectious disorders like chronic obstructive pulmonary disease (COPD) or arthritis. Altogether,CLEC5A may be considered as an innate immune checkpoint capable to amplify proinflammatory signals,and this way contributes to infection or to aseptic inflammation. In this study,we determined CLEC5A receptor expression on different macrophage subsets (in vitro and ex vivo) and the functional consequences of its activation in aseptic conditions. The CLEC5A surface expression appeared the highest on proinflammatory M1 macrophages while intermediate on tumor-associated phenotypes (M2c or TAM). In contrast,the CLEC5A expression on ex vivo-derived alveolar macrophages from healthy donors or macrophages from ovarian cancer patients was hardly detectable. Targeting CLEC5A on noninflammatory macrophages with an agonistic $\alpha$-CLEC5A antibody triggered a release of proinflammatory cytokines,resembling a response to dengue virus,and led to phenotypic changes in myeloid cells that may suggest their reprogramming towards a proinflammatory phenotype,e.g.,upregulation of CD80 and downregulation of CD163. Interestingly,the CLEC5A agonist upregulated immune-regulatory molecules like CD206,PD-L1,and cytokines like IL-10,macrophage-derived chemokine (MDC/CCL22),and thymus and activation chemokine (TARC/CCL17) which are associated with an anti-inflammatory or a protumorigenic macrophage phenotype. In the absence of concomitant pathogenic or endogenous danger signals,the CLEC5A receptor activation did not amplify an autologous T cell response,which may represent a protective innate mechanism to avoid an undesirable autoimmune adaptive response.
View Publication
文献
L. Tang et al. (apr 2022)
FEBS open bio 12 4 784--797
Isolation and characterization of peritoneal microvascular pericytes.
As a potential source of myofibroblasts,pericytes may play a role in human peritoneal fibrosis. The culture of primary vascular pericytes in animals has previously been reported,most of which are derived from cerebral and retinal microvasculature. Here,in the field of peritoneal dialysis,we describe a method to isolate and characterize mouse peritoneal microvascular pericytes. The mesenteric tissues of five mice were collected and digested by type II collagenase and type I DNase. After cell attachment,the culture fluid was replaced with pericyte-conditioned medium. Pericytes with high purity (99.0%) could be isolated by enzymatic disaggregation combined with conditional culture and magnetic activated cell sorting. The primary cells were triangular or polygonal with protrusions,and confluent cell culture could be established in 3??days. The primary pericytes were positive for platelet-derived growth factor receptor-$\beta$,$\alpha$-smooth muscle actin,neuron-glial antigen 2,and CD13. Moreover,they promoted formation of endothelial tubes,and pericyte-myofibroblast transition occurred after treatment with transforming growth factor-$\beta$1. In summary,we describe here a reproducible isolation protocol for primary peritoneal pericytes,which may be a powerful tool for in??vitro peritoneal fibrosis studies.
View Publication
文献
J. R. Byrnes et al. (apr 2022)
Molecular & cellular proteomics : MCP 21 4 100217
Hypoxia Is a Dominant Remodeler of the Effector T Cell Surface Proteome Relative to Activation and Regulatory T Cell Suppression.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However,how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here,using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics,we examined how two immunosuppressive TME factors,regulatory T cells (Tregs) and hypoxia,globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly,coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast,hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia,revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.
View Publication
文献
H. Shen et al. (dec 2022)
Journal of orthopaedic research : official publication of the Orthopaedic Research Society 40 12 2754--2762
The use of connective tissue growth factor mimics for flexor tendon repair.
Intrasynovial flexor tendon lacerations of the hand are clinically problematic,typically requiring operative repair and extensive rehabilitation. The small-molecule connective tissue growth factor (CTGF) mimics,oxotremorine M (Oxo-M) and 4-PPBP maleate (4-PPBP),have been shown to improve tendon healing in small animal models by stimulating the expansion and differentiation of perivascular CD146+ cells. To enhance intrasynovial flexor tendon healing,small-molecule CTGF mimics were delivered to repaired canine flexor tendons via porous sutures. In vitro studies demonstrated that Oxo-M and 4-PPBP retained their bioactivity and could be released from porous sutures in a sustained manner. However,in vivo delivery of the CTGF mimics did not improve intrasynovial tendon healing. Histologic analyses and expression of tenogenic,extracellular matrix,inflammation,and remodeling genes showed similar outcomes in treated and untreated repairs across two time points. Although in vitro experiments revealed that CTGF mimics stimulated robust responses in extrasynovial tendon cells,there was no response in intrasynovial tendon cells,explaining the lack of in vivo effects. The results of the current study indicate that therapeutic strategies for tendon repair must carefully consider the environment and cellular makeup of the particular tendon for improving the healing response.
View Publication
文献
D. Tang et al. ( 2022)
Journal of inflammation research 15 1079--1097
Tumor-Infiltrating PD-L1+ Neutrophils Induced by GM-CSF Suppress T Cell Function in Laryngeal Squamous Cell Carcinoma and Predict Unfavorable Prognosis.
PURPOSE Chronic inflammation contributes to tumor initiation,progression,and immune escape. Neutrophils are the major component of inflammatory response and participate in the tumorigenesis process. However,compared to other immune cells in the tumor microenvironment of laryngeal squamous cell carcinoma (LSCC),neutrophils,especially the tumor-associated neutrophils (TANs),have not yet been comprehensively explored. The mechanism for regulating the crosstalk between TANs and tumor cells still remains unclear. MATERIALS AND METHODS The distribution profiles and phenotypic features of neutrophils and other inflammatory immune cell populations from a large LSCC patient cohort were systemically analyzed. Co-culturing of peripheral blood associated neutrophils (PANs) and TANs with PBMCs was performed,and the immunosuppression effect on T-cells was examined. RESULTS LSCC microenvironment is highly inflammatory with remarkable TANs infiltration,which is often associated with unfavorable prognosis and advanced clinical stage. We find that TANs in LSCC display morphologically immature and lower apoptosis,exhibit distinctively immunosuppressive phenotype of high PD-L1,and suppress CD8+ T lymphocytes proliferation and activation. We subsequently discover that PD-L1+TANs induced by LSCC-derived GM-CSF potently impair CD8+ T-cells proliferation and cytokines production function,which are partially blocked by a PD-L1-neutralizing antibody. Clinical data further support GM-CSF as an unfavorable prognostic biomarker and reveal a potential association with inflammatory immune cell infiltration,in particular neutrophils. CONCLUSION Tumor-infiltrating PD-L1+ neutrophils induced by LSCC-derived GM-CSF suppress T cell proliferation and activation in the inflammatory microenvironment of LSCC and predict unfavorable prognosis. These TANs cripple antitumor T cell immunity and promote tumor progression. Our findings provide a basis for targeting PD-L1+TANs or GM-CSF as a new immunotherapeutic strategy for LSCC.
View Publication
文献
A. Tuval et al. (nov 2022)
Haematologica 107 11 2548--2561
Pseudo-mutant P53 is a unique phenotype of DNMT3A-mutated pre-leukemia.
Pre-leukemic clones carrying DNMT3A mutations have a selective advantage and an inherent chemoresistance,however the basis for this phenotype has not been fully elucidated. Mutations affecting the gene TP53 occur in pre-leukemic hematopoietic stem/progenitor cells (preL-HSPC) and lead to chemoresistance. Many of these mutations cause a conformational change and some of them were shown to enhance self-renewal capacity of preL-HSPC. Intriguingly,a misfolded P53 was described in AML blasts that do not harbor mutations in TP53,emphasizing the dynamic equilibrium between wild-type (WT) and pseudo-mutant" conformations of P53. By combining single cell analyses and P53 conformation-specific monoclonal antibodies we studied preL-HSPC from primary human DNMT3A-mutated AML samples. We found that while leukemic blasts express mainly the WT conformation in preL-HSPC the pseudo-mutant conformation is the dominant. HSPC from non-leukemic samples expressed both conformations to a similar extent. In a mouse model we found a small subset of HSPC with a dominant pseudo-mutant P53. This subpopulation was significantly larger among DNMT3AR882H-mutated HSPC suggesting that while a pre-leukemic mutation can predispose for P53 misfolding additional factors are involved as well. Treatment with a short peptide that can shift the dynamic equilibrium favoring the WT conformation of P53 specifically eliminated preL-HSPC that had dysfunctional canonical P53 pathway activity as reflected by single cell RNA sequencing. Our observations shed light upon a possible targetable P53 dysfunction in human preL-HSPC carrying DNMT3A mutations. This opens new avenues for leukemia prevention."
View Publication
文献
G. Leclercq et al. ( 2022)
Oncoimmunology 11 1 2039432
Dissecting the mechanism of cytokine release induced by T-cell engagers highlights the contribution of neutrophils.
T cell engagers represent a novel promising class of cancer-immunotherapies redirecting T cells to tumor cells and have some promising outcomes in the clinic. These molecules can be associated with a mode-of-action related risk of cytokine release syndrome (CRS) in patients. CRS is characterized by the rapid release of pro-inflammatory cytokines such as TNF-$\alpha$,IFN-$\gamma$,IL-6 and IL-1$\beta$ and immune cell activation eliciting clinical symptoms of fever,hypoxia and hypotension. In this work,we investigated the biological mechanisms triggering and amplifying cytokine release after treatment with T cell bispecific antibodies (TCBs) employing an in vitro co-culture assay of human PBMCs or total leukocytes (PBMCs + neutrophils) and corresponding target antigen-expressing cells with four different TCBs. We identified T cells as the triggers of the TCB-mediated cytokine cascade and monocytes and neutrophils as downstream amplifier cells. Furthermore,we assessed the chronology of events by neutralization of T-cell derived cytokines. For the first time,we demonstrate the contribution of neutrophils to TCB-mediated cytokine release and confirm these findings by single-cell RNA sequencing of human whole blood incubated with a B-cell depleting TCB. This work could contribute to the construction of mechanistic models of cytokine release and definition of more specific molecular and cellular biomarkers of CRS in the context of treatment with T-cell engagers. In addition,it provides insight for the elaboration of prophylactic mitigation strategies that can reduce the occurrence of CRS and increase the therapeutic index of TCBs.
View Publication
文献
G. Tumurkhuu et al. ( 2022)
Frontiers in immunology 13 790043
Neutrophils Contribute to ER Stress in Lung Epithelial Cells in the Pristane-Induced Diffuse Alveolar Hemorrhage Mouse Model.
Diffuse alveolar hemorrhage (DAH),although rare,is a life-threatening complication of systemic lupus erythematosus (SLE). Little is known about the pathophysiology of DAH in humans,although increasingly neutrophils,NETosis and inflammatory monocytes have been shown to play an important role in the pristane-induced model of SLE which develops lung hemorrhage and recapitulates many of the pathologic features of human DAH. Using this experimental model,we asked whether endoplasmic reticulum (ER) stress played a role in driving the pathology of pulmonary hemorrhage and what role infiltrating neutrophils had in this process. Analysis of lung tissue from pristane-treated mice showed genes associated with ER stress and NETosis were increased in a time-dependent manner and reflected the timing of CD11b+Ly6G+ neutrophil accumulation in the lung. Using precision cut lung slices from untreated mice we observed that neutrophils isolated from the peritoneal cavity of pristane-treated mice could directly induce the expression of genes associated with ER stress,namely Chop and Bip. Mice which had myeloid-specific deletion of PAD4 were generated and treated with pristane to assess the involvement of PAD4 and PAD4-dependent NET formation in pristane-induced lung inflammation. Specific deletion of PAD4 in myeloid cells resulted in decreased expression of ER stress genes in the pristane model,with accompanying reduction in IFN-driven genes and pathology. Lastly,coculture experiments of human neutrophils and human lung epithelial cell line (BEAS-2b) showed neutrophils from SLE patients induced significantly more ER stress and interferon-stimulated genes in epithelial cells compared to healthy control neutrophils. These results support a pathogenic role of neutrophils and NETs in lung injury during pristane-induced DAH through the induction of ER stress response and suggest that overactivation of neutrophils in SLE and NETosis may underlie development of DAH.
View Publication