H. Piao et al. (may 2022)
Journal of experimental & clinical cancer research : CR 41 1 174
A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression.
BACKGROUND Hypoxia and inflammation tumor microenvironment (TME) play a crucial role in tumor development and progression. Although increased understanding of TME contributed to gastric cancer (GC) progression and prognosis,the direct interaction between macrophage and GC cells was not fully understood. METHODS Hypoxia and normoxia macrophage microarrays of GEO database was analyzed. The peripheral blood mononuclear cell acquired from the healthy volunteers. The expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) in GC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR),western-blot,Elisa and immunofluorescence. Cell proliferation,migration,and invasion were evaluated by cell counting kit 8 (CCK8),colony formation,real-time imaging of cell migration and transwell. Flow Cytometers was applied to identify the source of cytokines. Luciferase reporter assays and chromatin immunoprecipitation were used to identify the interaction between transcription factor and target gene. Especially,a series of truncated and mutation reporter genes were applied to identify precise binding sites. The corresponding functions were verified in the complementation test and in vivo animal experiment. RESULTS Our results revealed that hypoxia triggered macrophage secreted CXCL8,which induced GC invasion and proliferation. This macrophage-induced GC progression was CXCL8 activated C-X-C Motif Chemokine Receptor 1/2 (CXCR1/2) on the GC cell membrane subsequently hyperactivated Janus kinase 1/ Signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway. Then,the transcription factor STAT1 directly led to the overexpression and secretion of Interleukin 10 (IL-10). Correspondingly,IL-10 induced the M2-type polarization of macrophages and continued to increase the expression and secretion of CXCL8. It suggested a positive feedback loop between macrophage and GC. In clinical GC samples,increased CXCL8 predicted a patient's pessimistic outcome. CONCLUSION Our work identified a positive feedback loop governing cancer cells and macrophage in GC that contributed to tumor progression and patient outcome.
View Publication
文献
K. Seiler et al. (may 2022)
Cell death & disease 13 5 448
Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions.
The family of hexokinases (HKs) catalyzes the first step of glycolysis,the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed,the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system,we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead,loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death,oxidative stress,and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing,showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns,we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM,which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival,possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.
View Publication
文献
A. Z. Wang et al. (may 2022)
Genome medicine 14 1 49
Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response.
BACKGROUND Recent investigations of the meninges have highlighted the importance of the dura layer in central nervous system immune surveillance beyond a purely structural role. However,our understanding of the meninges largely stems from the use of pre-clinical models rather than human samples. METHODS Single-cell RNA sequencing of seven non-tumor-associated human dura samples and six primary meningioma tumor samples (4 matched and 2 non-matched) was performed. Cell type identities,gene expression profiles,and T cell receptor expression were analyzed. Copy number variant (CNV) analysis was performed to identify putative tumor cells and analyze intratumoral CNV heterogeneity. Immunohistochemistry and imaging mass cytometry was performed on selected samples to validate protein expression and reveal spatial localization of select protein markers. RESULTS In this study,we use single-cell RNA sequencing to perform the first characterization of both non-tumor-associated human dura and primary meningioma samples. First,we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition,we characterize a functionally diverse and heterogenous landscape of non-immune cells including endothelial cells and fibroblasts. Through imaging mass cytometry,we highlight the spatial relationship among immune cell types and vasculature in non-tumor-associated dura. Utilizing T cell receptor sequencing,we show significant TCR overlap between matched dura and meningioma samples. Finally,we report copy number variant heterogeneity within our meningioma samples. CONCLUSIONS Our comprehensive investigation of both the immune and non-immune cellular landscapes of human dura and meningioma at single-cell resolution builds upon previously published data in murine models and provides new insight into previously uncharacterized roles of human dura.
View Publication
文献
P. M. R. Pereira et al. (may 2022)
Nature communications 13 1 2526
Caveolin-1 temporal modulation enhances antibody drug efficacy in heterogeneous gastric cancer.
Resistance mechanisms and heterogeneity in HER2-positive gastric cancers (GC) limit Trastuzumab benefit in 32% of patients,and other targeted therapies have failed in clinical trials. Using patient samples,patient-derived xenografts (PDXs),partially humanized biological models,and HER2-targeted imaging technologies we demonstrate the role of caveolin-1 (CAV1) as a complementary biomarker in GC selection for Trastuzumab therapy. In retrospective analyses of samples from patients enrolled on Trastuzumab trials,the CAV1-high profile associates with low membrane HER2 density and low patient survival. We show a negative correlation between CAV1 tumoral protein levels - a major protein of cholesterol-rich membrane domains - and Trastuzumab-drug conjugate TDM1 tumor uptake. Finally,CAV1 depletion using knockdown or pharmacologic approaches (statins) increases antibody drug efficacy in tumors with incomplete HER2 membranous reactivity. In support of these findings,background statin use in patients associates with enhanced antibody efficacy. Together,this work provides preclinical justification and clinical evidence that require prospective investigation of antibody drugs combined with statins to delay drug resistance in tumors.
View Publication
文献
H. Mkhikian et al. (mar 2022)
Nature aging 2 3 231--242
Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching.
Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males,in na{\{i}}ve more than memory T cells and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of na{\"{i}}ve T cells (TN) decrease with age however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells and triggered increased branching. N-acetylglucosamine a rate-limiting metabolite for branching increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine."
View Publication
文献
M. Li\'egeois et al. (aug 2022)
American journal of respiratory cell and molecular biology 67 2 241--252
Airway Macrophages Encompass Transcriptionally and Functionally Distinct Subsets Altered by Smoking.
Alveolar macrophages (AMs) are functionally important innate cells involved in lung homeostasis and immunity and whose diversity in health and disease is a subject of intense investigations. Yet,it remains unclear to what extent conditions like smoking or chronic obstructive pulmonary disease (COPD) trigger changes in the AM compartment. Here,we aimed to explore heterogeneity of human AMs isolated from healthy nonsmokers,smokers without COPD,and smokers with COPD by analyzing BAL fluid cells by flow cytometry and bulk and single-cell RNA sequencing. We found that subpopulations of BAL fluid CD206+ macrophages could be distinguished based on their degree of autofluorescence in each subject analyzed. CD206+ autofluorescenthigh AMs were identified as classical,self-proliferative AM,whereas autofluorescentlow AMs were expressing both monocyte and classical AM-related genes,supportive of a monocytic origin. Of note,monocyte-derived autofluorescentlow AMs exhibited a functionally distinct immunoregulatory profile,including the ability to secrete the immunosuppressive cytokine IL-10. Interestingly,single-cell RNA-sequencing analyses showed that transcriptionally distinct clusters of classical and monocyte-derived AM were uniquely enriched in smokers with and without COPD as compared with healthy nonsmokers. Of note,such smoking-associated clusters exhibited gene signatures enriched in detoxification,oxidative stress,and proinflammatory responses. Our study independently confirms previous reports supporting that monocyte-derived macrophages coexist with classical AM in the airways of healthy subjects and patients with COPD and identifies smoking-associated changes in the AM compartment that may favor COPD initiation or progression.
View Publication
文献
A. Zheng et al. ( 2022)
Frontiers in immunology 13 829391
Sustained Drug Release From Liposomes for the Remodeling of Systemic Immune Homeostasis and the Tumor Microenvironment.
Myeloid Derived Suppressor Cells (MDSCs) play important roles in constituting the immune suppressive environment promoting cancer development and progression. They are consisted of a heterogeneous population of immature myeloid cells including polymorphonuclear MDSC (PMN-MDSC) and monocytes MDSC (M-MDSC) that are found in both the systemic circulation and in the tumor microenvironment (TME). While previous studies had shown that all-trans retinoic acid (ATRA) could induce MDSC differentiation and maturation,the very poor solubility and fast metabolism of the drug limited its applications as an immune-modulator for cancer immunotherapy. We aimed in this study to develop a drug encapsulated liposome formulation L-ATRA with sustained release properties and examined the immuno-modulation effects. We showed that the actively loaded L-ATRA achieved stable encapsulation and enabled controlled drug release and accumulation in the tumor tissues. In vivo administration of L-ATRA promoted the remodeling of the systemic immune homeostasis as well as the tumor microenvironment. They were found to promote MDSCs maturation into DCs and facilitate immune responses against cancer cells. When used as a single agent treatment,L-ATRA deterred tumor growth,but only in immune-competent mice. In mice with impaired immune functions,L-ATRA at the same dose was not effective. When combined with checkpoint inhibitory agents,L-ATRA resulted in greater anti-cancer activities. Thus,L-ATRA may present a new IO strategy targeting the MDSCs that needs be further explored for improving the immunotherapy efficacy in cancer.
View Publication
文献
M. E. C. Bruno et al. (jun 2022)
GeroScience 44 3 1761--1778
Accumulation of ?? T cells in visceral fat with aging promotes chronic inflammation.
Adipose tissue dysfunction is strongly linked to the development of chronic inflammation and cardiometabolic disorders in aging. While much attention has been given to the role of resident adipose tissue immune cells in the disruption of homeostasis in obesity,age-specific effects remain understudied. Here,we identified and characterized a population of ?? T cells,which show unique age-dependent accumulation in the visceral adipose tissue (VAT) of both mice and humans. Diet-induced obesity likewise increased ?? T cell numbers; however,the effect was greater in the aged where the increase was independent of fat mass. ?? T cells in VAT express a tissue-resident memory T cell phenotype (CD44hiCD62LlowCD69+) and are predominantly IL-17A-producing cells. Transcriptome analyses of immunomagnetically purified ?? T cells identified significant age-associated differences in expression of genes related to inflammation,immune cell composition,and adipocyte differentiation,suggesting age-dependent qualitative changes in addition to the quantitative increase. Genetic deficiency of ?? T cells in old age improved the metabolic phenotype,characterized by increased respiratory exchange ratio,and lowered levels of IL-6 both systemically and locally in VAT. Decreased IL-6 was predominantly due to reduced production by non-immune stromal cells,primarily preadipocytes,and adipose-derived stem cells. Collectively,these findings suggest that an age-dependent increase of tissue-resident ?? T cells in VAT contributes to local and systemic chronic inflammation and metabolic dysfunction in aging.
View Publication
文献
N. Tsuji et al. (jun 2022)
Leukemia 36 6 1666--1675
Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15.
To determine whether antigen presentation by HLA-DR on hematopoietic stem progenitor cells (HSPCs) is involved in the development of acquired aplastic anemia (AA),we studied the HLA-DR expression on CD45dimCD34+CD38+ cells in the peripheral blood of 61 AA patients including 23 patients possessing HLA-class I allele-lacking (HLA-class I[-]) leukocytes. HLA-DR-lacking (DR[-]) cells accounted for 13.0-57.1% of the total HSPCs in seven (11.5%) patients with HLA-DR15 who did not possess HLA-class I(-) leukocytes. The incubation of sorted DR(-) HSPCs in the presence of IFN-$\gamma$ for 72??h resulted in the full restoration of the DR expression. A comparison of the transcriptome profile between DR(-) and DR(+) HSPCs revealed the lower expression of immune response-related genes including co-stimulatory molecules (e.g.,CD48,CD74,and CD86) in DR(-) cells,which was not evident in HLA-class I(-) HSPCs. DR(-) cells were exclusively detected in GPI(+) HSPCs in four patients whose HSPCs could be analyzed separately for GPI(+) and GPI(-) HSPCs. These findings suggest that CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs may contribute to the development of AA as well as the immune escape of GPI(-) HSPCs in a distinct way from CD8+ T cells recognizing HLA-class I-restricted antigens.
View Publication
文献
F. Qian et al. (may 2022)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 36 5 e22328
Interleukin-4 treatment reduces leukemia burden in acute myeloid leukemia.
Interleukin-4 (IL-4) is a signature cytokine pivotal in Type 2 helper T cell (Th2) immune response,particularly in allergy and hypersensitivity. Interestingly,IL-4 increases endogenous levels of prostaglandin D2 (PGD2 ) and its metabolites,$\Delta$12 -prostaglandin J2 ($\Delta$12 -PGJ2 ) and 15-deoxy-$\Delta$12,14 -prostaglandin J2 (15d-PGJ2 ),collectively called cyclopentenone PGs (CyPGs). However,the therapeutic role of IL-4 in hematologic malignancies remains unclear. Here,we employed a murine model of acute myeloid leukemia (AML),where human MLL-AF9 fusion oncoprotein was expressed in hematopoietic progenitor cells,to test the effect of IL-4 treatment in vivo. Daily intraperitoneal treatment with IL-4 at 60 µg/kg/d significantly alleviated the severity of AML,as seen by decreased leukemia-initiating cells (LICs). The effect of IL-4 was mediated,in part,by the enhanced expression of hematopoietic- PGD2 synthase (H-PGDS) to effect endogenous production of CyPGs,through autocrine and paracrine signaling mechanisms. Similar results were seen with patient-derived AML cells cultured ex vivo with IL-4. Use of GW9662,a peroxisome proliferator-activated receptor gamma (PPAR$\gamma$) antagonist,suggested endogenous CyPGs-PPAR$\gamma$ axis mediated p53-dependent apoptosis of LICs by IL-4. Taken together,our results reveal a beneficial role of IL-4 treatment in AML suggesting a potential therapeutic regimen worthy of clinical trials in patients with AML.
View Publication
文献
J. C. Wagner et al. (sep 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 9 2237--2245
Alloantigen-specific regulatory T cell (Treg) therapy is a promising approach for suppressing alloimmune responses and minimizing immunosuppression after solid organ transplantation. Chimeric antigen receptor (CAR) targeting donor alloantigens can confer donor reactivity to Tregs. However,CAR Treg therapy has not been evaluated in vascularized transplant or multi-MHC mismatched models. Here,we evaluated the ability of CAR Tregs targeting HLA-A2 (A2-CAR) to prolong the survival of heterotopic heart transplants in mice. After verifying the in vitro activation,proliferation,and enhanced suppressive function of A2-CAR Tregs in the presence of A2-antigen,we analyzed the in vivo function of Tregs in C57BL/6 (B6) mice receiving A2-expressing heart allografts. A2-CAR Treg infusion increased the median survival of grafts from B6.HLA-A2 transgenic donors from 23 to 99 days,whereas median survival with polyclonal Treg infusion was 35 days. In a more stringent model of haplo-mismatched hearts from BALB/cxB6.HLA-A2 F1 donors,A2-CAR Tregs slightly increased median graft survival from 11 to 14 days,which was further extended to >100 days when combined with a 9-day course of rapamycin treatment. These findings demonstrate the efficacy of CAR Tregs,alone or in combination with immunosuppressive agents,toward protecting vascularized grafts in fully immunocompetent recipients.
View Publication
文献
N. Albinger et al. (apr 2022)
Blood cancer journal 12 4 61
Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia.
Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced,AML remains a therapeutic challenge with insufficient cure rates. In the last years,immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced,which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However,the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression,unimpeded proliferation,and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore,CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.
View Publication