Biffi A et al. (NOV 2006)
The Journal of clinical investigation 116 11 3070--82
Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice.
Metachromatic leukodystrophy (MLD) is a demyelinating lysosomal storage disorder for which new treatments are urgently needed. We previously showed that transplantation of gene-corrected hematopoietic stem progenitor cells (HSPCs) in presymptomatic myeloablated MLD mice prevented disease manifestations. Here we show that HSC gene therapy can reverse neurological deficits and neuropathological damage in affected mice,thus correcting an overt neurological disease. The efficacy of gene therapy was dependent on and proportional to arylsulfatase A (ARSA) overexpression in the microglia progeny of transplanted HSPCs. We demonstrate a widespread enzyme distribution from these cells through the CNS and a robust cross-correction of neurons and glia in vivo. Conversely,a peripheral source of enzyme,established by transplanting ARSA-overexpressing hepatocytes from transgenic donors,failed to effectively deliver the enzyme to the CNS. These results indicate that the recruitment of gene-modified,enzyme-overexpressing microglia makes the enzyme bioavailable to the brain and makes therapeutic efficacy and disease correction attainable. Overall,our data provide a strong rationale for implementing HSPC gene therapy in MLD patients.
View Publication
Miura Y et al. (NOV 2006)
Stem cells (Dayton,Ohio) 24 11 2428--36
Mesenchymal stem cell-organized bone marrow elements: an alternative hematopoietic progenitor resource.
Bone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent postnatal stem cells that have been used for the treatment of bone defects and graft-versus-host diseases in clinics. In this study,we found that subcutaneously transplanted human BMMSCs are capable of organizing hematopoietic progenitors of recipient origin. These hematopoietic cells expressed multiple lineages of hematopoietic cell associated markers and were able to rescue lethally irradiated mice,with successful engraftment in the recipient,suggesting a potential bone marrow (BM) resource for stem cell therapies. Furthermore,we found that platelet-derived growth factor (PDGF) promotes the formation of BMMSC-generated BM niches through upregulation of beta-catenin,implying that the PDGF pathway contributes to the formation of ectopic BM. These results indicate that the BMMSC-organized BM niche system represents a unique hematopoietic progenitor resource possessing potential clinical value.
View Publication
Fujii H et al. (MAR 2007)
Blood 109 5 2008--13
In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides.
Despite considerable success in treating newly diagnosed childhood acute lymphoblastic leukemia (ALL),relapsed disease remains a significant clinical challenge. Using a NOD/SCID mouse xenograft model,we report that immunostimulatory DNA oligonucleotides containing CpG motifs (CpG ODNs) stimulate significant immune activity against primary human ALL cells in vivo. The administration of CpG ODNs induced a significant reduction in systemic leukemia burden,mediated continued disease control,and significantly improved survival of mice with established human ALL. The death of leukemia cells in vivo was independent of the ability of ALL cells to respond directly to CpG ODNs and correlated with the production of IL-12p70,IFN-alpha,and IFN-gamma by the host. In addition,depletion of natural killer cells by anti-asialo-GM1 treatment significantly reduced the in vivo antileukemic activity of CpG ODN. This antileukemia effect was not limited to the xenograft model because natural killer cell-dependent killing of ALL by human peripheral blood mononuclear cells (PBMCs) was also increased by CpG ODN stimulation. These results suggest that CpG ODNs have potential as therapeutic agents for the treatment of ALL.
View Publication
Weisberg E et al. (MAR 2007)
Blood 109 5 2112--20
Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias.
Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor,nilotinib (AMN107),is significantly more potent against BCR-ABL than imatinib,and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib,indicating that sequential therapy with these 2 agents has clinical value. However,simultaneous,rather than sequential,administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons,including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here,we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity,including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further,using a highly quantifiable bioluminescent in vivo model,drug combinations were at least additive in antileukemic activity,compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase,the combination of imatinib and nilotinib is highly efficacious in these models,indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.
View Publication
Wencker M et al. (JAN 2007)
Journal of virology 81 1 301--8
Human T-cell leukemia virus type 1 Tax protein down-regulates pre-T-cell receptor alpha gene transcription in human immature thymocytes.
The human pre-T-cell receptor alpha (TCRalpha; pTalpha) gene encodes a polypeptide which associates with the TCRbeta chain and CD3 molecules to form the pre-TCR complex. The surface expression of the pre-TCR is pTalpha dependent,and signaling through this complex triggers an early alphabeta T-cell developmental checkpoint inside the thymus,known as beta-selection. E2A transcription factors,which are involved at multiple stages of T-cell development,regulate the transcription of the pTalpha gene. Here we show that the regulatory protein Tax of the human T-cell leukemia virus type 1 (HTLV-1) efficiently suppresses the E47-mediated activation of the pTalpha promoter. Furthermore,we report that in Tax lentivirally transduced human MOLT-4 T cells,which constitutively express the pTalpha gene,the amount of pTalpha transcripts decreases. Such a decrease is not observed in MOLT-4 cells transduced by a vector encoding the Tax mutant K88A,which is unable to interact with p300. These data underline that Tax inhibits pTalpha transcription by recruiting this coactivator. Finally,we show that the expression of Tax in human immature thymocytes results in a decrease of pTalpha gene transcription but does not modify the level of E47 transcripts. These observations indicate that Tax,by silencing E proteins,down-regulates pTalpha gene transcription during early thymocyte development. They further provide evidence that Tax can interfere with an important checkpoint during T-cell differentiation in the thymus.
View Publication
Jenkins RB et al. (OCT 2006)
Cancer research 66 20 9852--61
A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms,suggesting a t(1;19)(q10;p10). Using stem cell medium,we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture,one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas,the prevalence of fusion was 81%. Among NCCTG patients,CEP1/19p12 fusion prevalence was 55%,47%,and 0% among the oligodendrogliomas,mixed oligoastrocytomas,and astrocytomas,respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P textless 0.001,chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion,the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.
View Publication
Mologni L et al. ( 2006)
Journal of molecular endocrinology 37 2 199--212
Inhibition of RET tyrosine kinase by SU5416.
Thyroid neoplasia is frequently associated with rearranged during transfection (RET) proto-oncogene mutations that cause hyperactivation of RET kinase activity. Selective inhibition of RET-mediated signaling should lead to an efficacious therapy. SU5416 is a potent inhibitor of vascular endothelial cell growth factor receptor,c-Kit,and FLT-3 receptor tyrosine kinases presently used in clinical trials. We found that SU5416 inhibits RET with similar potency,both in cell-free assays and in cells,thus causing proliferation arrest in oncogenic RET-transfected cells and in papillary thyroid carcinoma (PTC) cells expressing the RET/PTC1 oncogene,but not in RET-negative control cells. SU5416 inhibited RET-mediated signaling through the extracellular signal regulated kinase (ERK) and JNK pathways. In addition,we show that a naturally occurring MEN2 mutation at codon 804 confers resistance to SU5416,but not to the related compound SU4984. We provide a possible explanation to these results by using molecular docking. Finally,SU5416 was also assessed against an array of 52 tyrosine and serine/threonine kinases.
View Publication
Korpi-Steiner NL et al. (DEC 2006)
Journal of leukocyte biology 80 6 1364--74
Human rhinovirus induces robust IP-10 release by monocytic cells, which is independent of viral replication but linked to type I interferon receptor ligation and STAT1 activation.
Human rhinovirus (HRV)-induced respiratory infections are associated with elevated levels of IFN-gamma-inducible protein 10 (IP-10),which is an enhancer of T lymphocyte chemotaxis and correlates with symptom severity and T lymphocyte number. Increased IP-10 expression is exhibited by airway epithelial cells following ex vivo HRV challenge and requires intracellular viral replication; however,there are conflicting reports regarding the necessity of type I IFN receptor ligation for IP-10 expression. Furthermore,the involvement of resident airway immune cells,predominantly bronchoalveolar macrophages,in contributing to HRV-stimulated IP-10 elaboration remains unclear. In this regard,our findings demonstrate that ex vivo exposure of human peripheral blood monocytes and bronchoalveolar macrophages (monocytic cells) to native or replication-defective HRV serotype 16 (HRV16) resulted in similarly robust levels of IP-10 release,which occurred in a time- and dose-dependent manner. Furthermore,HRV16 induced a significant increase in type I IFN (IFN-alpha) release and STAT1 phosphorylation in monocytes. Neutralization of the type I IFN receptor and inhibition of JAK or p38 kinase activity strongly attenuated HRV16-stimulated STAT1 phosphorylation and IP-10 release. Thus,this work supports a model,wherein HRV16-induced IP-10 release by monocytic cells is modulated via autocrine/paracrine action of type I IFNs and subsequent JAK/STAT pathway activity. Our findings demonstrating robust activation of monocytic cells in response to native and/or replication-defective HRV16 challenge represent the first evidence indicating a mechanistic disparity in the activation of macrophages when compared with epithelial cells and suggest that macrophages likely contribute to cytokine elaboration following HRV challenge in vivo.
View Publication
Pal S et al. (SEP 2006)
The Journal of cell biology 174 7 1047--58
An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis.
Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However,the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a neuropeptide
View Publication
Sloand EM et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 39 14483--8
Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor.
Granulocyte colony-stimulating factor (GCSF) administration has been linked to the development of monosomy 7 in severe congenital neutropenia and aplastic anemia. We assessed the effect of pharmacologic doses of GCSF on monosomy 7 cells to determine whether this chromosomal abnormality developed de novo or arose as a result of favored expansion of a preexisting clone. Fluorescence in situ hybridization (FISH) of chromosome 7 was used to identify small populations of aneuploid cells. When bone marrow mononuclear cells from patients with monosomy 7 were cultured with 400 ng/ml GCSF,all samples showed significant increases in the proportion of monosomy 7 cells. In contrast,bone marrow from karyotypically normal aplastic anemia,myelodysplastic syndrome,or healthy individuals did not show an increase in monosomy 7 cells in culture. In bone marrow CD34 cells of patients with myelodysplastic syndrome and monosomy 7,GCSF receptor (GCSFR) protein was increased. Although no mutation was found in genomic GCSFR DNA,CD34 cells showed increased expression of the GCSFR class IV mRNA isoform,which is defective in signaling cellular differentiation. GCSFR signal transduction via the Jak/Stat system was abnormal in monosomy 7 CD34 cells,with increased phosphorylated signal transducer and activation of transcription protein,STAT1-P,and increased STAT5-P relative to STAT3-P. Our results suggest that pharmacologic doses of GCSF increase the proportion of preexisting monosomy 7 cells. The abnormal response of monosomy 7 cells to GCSF would be explained by the expansion of undifferentiated monosomy 7 clones expressing the class IV GCSFR,which is defective in signaling cell maturation.
View Publication
Wahlstrom AM et al. (JAN 2007)
Blood 109 2 763--8
Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease.
The RAS proteins undergo farnesylation of a carboxyl-terminal cysteine (the C" of the carboxyl-terminal CaaX motif). After farnesylation
View Publication
Vanheusden K et al. (JAN 2007)
Stem cells (Dayton,Ohio) 25 1 107--14
In vitro expanded cells contributing to rapid severe combined immunodeficient repopulation activity are CD34+38-33+90+45RA-.
Expansion of hematopoietic stem cells could be used clinically to shorten the prolonged aplastic phase after umbilical cord blood (UCB) transplantation. In this report,we investigated rapid severe combined immunodeficient (SCID) repopulating activity (rSRA) 2 weeks after transplantation of CD34(+) UCB cells cultured with serum on MS5 stromal cells and in serum- and stroma-free cultures. Various subpopulations obtained after culture were studied for rSRA. CD34(+) expansion cultures resulted in vast expansion of CD45(+) and CD34(+) cells. Independent of the culture method,only the CD34(+)33(+)38(-) fraction of the cultured cells contained rSRA. Subsequently,we subfractionated the CD34(+)38(-) fraction using stem cell markers CD45RA and CD90. In vitro differentiation cultures showed CD34(+) expansion in both CD45RA(-) and CD90(+) cultures,whereas little increase in CD34(+) cells was observed in both CD45RA(+) and CD90(-) cultures. By four-color flow cytometry,we could demonstrate that CD34(+)38(-)45RA(-) and CD34(+)38(-)90(+) cell populations were largely overlapping. Both populations were able to reconstitute SCID/nonobese diabetic mice at 2 weeks,indicating that these cells contained rSRA activity. In contrast,CD34(+)38(-)45RA(+) or CD34(+)38(-)90(-) cells contributed only marginally to rSRA. Similar results were obtained when cells were injected intrafemorally,suggesting that the lack of reconstitution was not due to homing defects. In conclusion,we show that after in vitro expansion,rSRA is mediated by CD34(+)38(-)90(+)45RA(-) cells. All other cell fractions have limited reconstitutive potential,mainly because the cells have lost stem cell activity rather than because of homing defects. These findings can be used clinically to assess the rSRA of cultured stem cells.
View Publication