Orlandi A et al. (APR 2008)
American journal of physiology. Heart and circulatory physiology 294 4 H1541--9
Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture.
Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB),cocultured with neonatal mouse cardiomyocytes,acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days,mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions,acquired electrophysiological properties similar to those of cardiomyocytes,and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However,RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion,under our experimental conditions,hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However,the expression of human-specific cardiac genes was undetectable by RT-PCR.
View Publication
Louis SA et al. (APR 2008)
Stem cells (Dayton,Ohio) 26 4 988--96
Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay.
Advancement in our understanding of the biology of adult stem cells and their therapeutic potential relies heavily on meaningful functional assays that can identify and measure stem cell activity in vivo and in vitro. In the mammalian nervous system,neural stem cells (NSCs) are often studied using a culture system referred to as the neurosphere assay. We previously challenged a central tenet of this assay,that all neurospheres are derived from a NSC,and provided evidence that it overestimates NSC frequency,rendering it inappropriate for quantitation of NSC frequency in relation to NSC regulation. Here we report the development and validation of the neural colony-forming cell assay (NCFCA),which discriminates stem from progenitor cells on the basis of their proliferative potential. We anticipate that the NCFCA will provide additional clarity in discerning the regulation of NSCs,thereby facilitating further advances in the promising application of NSCs for therapeutic use.
View Publication
Zhang CC et al. (APR 2008)
Blood 111 7 3415--23
Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation.
Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy,but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular,the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that,together with other factors,can expand mouse bone marrow HSCs in culture. Here,we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF,TPO,and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers,as assayed by NOD/SCID transplantation. A serum-free culture containing SCF,TPO,FGF-1,angiopoietin-like 5,and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs,a number potentially applicable to several clinical processes including HSC transplantation.
View Publication
Elkabetz Y et al. (JAN 2008)
Genes & development 22 2 152--65
Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage.
Neural stem cells (NSCs) yield both neuronal and glial progeny,but their differentiation potential toward multiple region-specific neuron types remains remarkably poor. In contrast,embryonic stem cell (ESC) progeny readily yield region-specific neuronal fates in response to appropriate developmental signals. Here we demonstrate prospective and clonal isolation of neural rosette cells (termed R-NSCs),a novel NSC type with broad differentiation potential toward CNS and PNS fates and capable of in vivo engraftment. R-NSCs can be derived from human and mouse ESCs or from neural plate stage embryos. While R-NSCs express markers classically associated with NSC fate,we identified a set of genes that specifically mark the R-NSC state. Maintenance of R-NSCs is promoted by activation of SHH and Notch pathways. In the absence of these signals,R-NSCs rapidly lose rosette organization and progress to a more restricted NSC stage. We propose that R-NSCs represent the first characterized NSC stage capable of responding to patterning cues that direct differentiation toward region-specific neuronal fates. In addition,the R-NSC-specific genetic markers presented here offer new tools for harnessing the differentiation potential of human ESCs.
View Publication
Alternative splicing of vasohibin-1 generates an inhibitor of endothelial cell proliferation, migration, and capillary tube formation.
OBJECTIVE: In this study,the alternative splicing product of vasohibin 1 (VASH1B) was analyzed in direct comparison to the major isoform (VASH1A) for antiangiogenic effects on endothelial colony forming cells (ECFCs) from peripheral blood and on human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS: Expression studies in primary human endothelial cells revealed that both vasohibin proteins,hVASH1A and hVASH1B,localized in the nucleus and cytoplasm. Adenoviruses carrying the cDNA for VASH1A/B and purified recombinant proteins were used to study the function of both molecules in ECFCs and HUVECs. Recombinant VASH1A protein did not inhibit cell proliferation,tube formation,or vessel growth in vivo in the chick chorioallantoic membrane (CAM) assay,but promoted endothelial cell migration in vitro. The VASH1B protein had an inhibitory effect on cell proliferation,migration,tube formation,and inhibited blood vessel formation in the CAM assay. Adenoviral overexpression of VASH1B,but not of VASH1A,resulted in inhibition of endothelial cell growth,migration,and capillary formation. Interestingly,overexpression of VASH1A and B induced apoptosis in proliferating human fibroblasts,but did not affect cell growth of keratinocytes. CONCLUSIONS: Our data point out that alternative splicing of the VASH1 pre-mRNA transcript generates a potent antiangiogenic protein.
View Publication
Matsui W et al. (JAN 2008)
Cancer research 68 1 190--7
Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance.
Many agents are active in multiple myeloma,but the majority of patients relapse. This clinical pattern suggests most cancer cells are eliminated,but cells with the clonogenic potential to mediate tumor regrowth are relatively chemoresistant. Our previous data suggested that CD138(+) multiple myeloma plasma cells cannot undergo long-term proliferation but rather arise from clonogenic CD138(neg) B cells. We compared the relative sensitivity of these distinct cell types to clinical antimyeloma agents and found that dexamethasone,lenadilomide,bortezomib,and 4-hydroxycyclophosphamide inhibited CD138(+) multiple myeloma plasma cells but had little effect on CD138(neg) precursors in vitro. We further characterized clonogenic multiple myeloma cells and stained cell lines using the Hoechst side population and Aldefluor assays. Each assay identified CD138(neg) cells suggesting that they possess high drug efflux capacity and intracellular drug detoxification activity. We also found that multiple myeloma cells expressing the memory B-cell markers CD20 and CD27 could give rise to clonogenic multiple myeloma growth in vitro and engraft immunodeficient nonobese diabetes/severe combined immunodeficient mice during both primary and secondary transplantation. Furthermore,both the side population and Aldefluor assays were capable of identifying circulating clonotypic memory B-cell populations within the peripheral blood of multiple myeloma patients. Our results suggest that circulating clonotypic B-cell populations represent multiple myeloma stem cells,and the relative drug resistance of these cells is mediated by processes that protect normal stem cells from toxic injury.
View Publication
Lee M-HH et al. (DEC 2007)
PLoS genetics 3 12 e233
Conserved regulation of MAP kinase expression by PUF RNA-binding proteins
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work,we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans,FBF/PUF binds regulatory elements in the mpk-1 3' untranslated region (3' UTR) and coprecipitates with mpk-1 mRNA; moreover,mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells,PUM2/PUF binds 3'UTR elements in both Erk2 and p38alpha mRNAs,and PUM2 represses reporter constructs carrying either Erk2 or p38alpha 3' UTRs. Therefore,the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes,where FBF promotes the self-renewal of germline stem cells,and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1,the C. elegans homolog of MAPK phosphatase (MKP),to restrict MAPK activity and prevent apoptosis. In mammals,activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal,and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.
View Publication
Kordes C et al. ( 2008)
Biochemical and biophysical research communications 367 1 116--123
Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells.
It is well known that hepatic stellate cells (HSC) develop into cells,which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that beta-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119,an inhibitor of the glycogen synthase kinase 3beta,led to reduced beta-catenin phosphorylation,induced nuclear translocation of beta-catenin,elevated glutamine synthetase production,impeded synthesis of alpha-smooth muscle actin and Wnt5a,but promoted the expression of glial fibrillary acidic protein,Wnt10b,and paired-like homeodomain transcription factor 2c. In addition,canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that beta-catenin-dependent Wnt signaling maintains the quiescent state of HSC and,similar to stem and progenitor cells,influences their developmental fate.
View Publication
Flanagan LA et al. (MAR 2008)
Stem cells (Dayton,Ohio) 26 3 656--65
Unique dielectric properties distinguish stem cells and their differentiated progeny.
The relatively new field of stem cell biology is hampered by a lack of sufficient means to accurately determine the phenotype of cells. Cell-type-specific markers,such as cell surface proteins used for flow cytometry or fluorescence-activated cell sorting,are limited and often recognize multiple members of a stem cell lineage. We sought to develop a complementary approach that would be less dependent on the identification of particular markers for the subpopulations of cells and would instead measure their overall character. We tested whether a microfluidic system using dielectrophoresis (DEP),which induces a frequency-dependent dipole in cells,would be useful for characterizing stem cells and their differentiated progeny. We found that populations of mouse neural stem/precursor cells (NSPCs),differentiated neurons,and differentiated astrocytes had different dielectric properties revealed by DEP. By isolating NSPCs from developmental ages at which they are more likely to generate neurons,or astrocytes,we were able to show that a shift in dielectric property reflecting their fate bias precedes detectable marker expression in these cells and identifies specific progenitor populations. In addition,experimental data and mathematical modeling suggest that DEP curve parameters can indicate cell heterogeneity in mixed cultures. These findings provide evidence for a whole cell property that reflects stem cell fate bias and establish DEP as a tool with unique capabilities for interrogating,characterizing,and sorting stem cells.
View Publication
Ibarra I et al. (DEC 2007)
Genes & development 21 24 3238--43
A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells.
microRNA (miRNA) expression profiles are often characteristic of specific cell types. The mouse mammary epithelial cell line,Comma-Dbeta,contains a population of self-renewing progenitor cells that can reconstitute the mammary gland. We purified this population and determined its miRNA signature. Several microRNAs,including miR-205 and miR-22,are highly expressed in mammary progenitor cells,while others,including let-7 and miR-93,are depleted. Let-7 sensors can be used to prospectively enrich self-renewing populations,and enforced let-7 expression induces loss of self-renewing cells from mixed cultures.
View Publication
McDermott U et al. ( 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 50 19936--19941
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.
Kinase inhibitors constitute an important new class of cancer drugs,whose selective efficacy is largely determined by underlying tumor cell genetics. We established a high-throughput platform to profile 500 cell lines derived from diverse epithelial cancers for sensitivity to 14 kinase inhibitors. Most inhibitors were ineffective against unselected cell lines but exhibited dramatic cell killing of small nonoverlapping subsets. Cells with exquisite sensitivity to EGFR,HER2,MET,or BRAF kinase inhibitors were marked by activating mutations or amplification of the drug target. Although most cell lines recapitulated known tumor-associated genotypes,the screen revealed low-frequency drug-sensitizing genotypes in tumor types not previously associated with drug susceptibility. Furthermore,comparing drugs thought to target the same kinase revealed striking differences,predictive of clinical efficacy. Genetically defined cancer subsets,irrespective of tissue type,predict response to kinase inhibitors,and provide an important preclinical model to guide early clinical applications of novel targeted inhibitors.
View Publication
Sareila O et al. ( 2008)
International immunopharmacology 8 1 100--108
Janus kinase 3 inhibitor WHI-P154 in macrophages activated by bacterial endotoxin: differential effects on the expression of iNOS, COX-2 and TNF-alpha.
Bacterial endotoxin is a potent inducer of inflammatory response,including the induction of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production,and the expression of cyclo-oxygenase (COX)-2 and tumor necrosis factor (TNF)-alpha in inflammatory cells. In the present study,we investigated the effects of pharmacological inhibition of Janus kinase (JAK) 3 on the production of these proinflammatory molecules in macrophages exposed to bacterial endotoxin (lipopolysaccharide; LPS). JAK3 inhibitors WHI-P154 (4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline) and its derivative WHI-P131 inhibited LPS-induced iNOS expression and NO production in a dose-dependent manner. WHI-P154 inhibited the activation of signal transducer and activator of transcription (STAT) 1 and the expression of iNOS mRNA but it had no effect on iNOS mRNA decay when determined by actinomycin D assay. The JAK3 inhibitor had no effect on COX-2 expression,and TNF-alpha production was slightly inhibited only at higher drug concentrations (30 microM). In addition,WHI-P154 inhibited iNOS expression and NO production also in human epithelial cells. Our results suggest that JAK3 inhibition modulates human and murine iNOS expression and NO production in response to inflammatory stimuli.
View Publication