技术资料
-
Ananiev GE et al. (JAN 2008) BMC molecular biology 9 68Optical mapping discerns genome wide DNA methylation profiles.
BACKGROUND: Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard,a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification. RESULTS: A single molecule approach is presented for the discernment of methylation profiles,based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore,the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping. CONCLUSION: The optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection,optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps,such as bisulfite treatment,and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies. View Publication -
Ma S et al. (JUL 2008) Molecular cancer research : MCR 6 7 1146--53Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations.
Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory,CSCs are believed to represent only a minority number of the tumor mass. This is indicative that our previously characterized CD133(+) HCC CSC population is still heterogeneous,consisting of perhaps subsets of cells with differing tumorigenic potential. We hypothesized that it is possible to further enrich the CSC population by means of additional differentially expressed markers. Using a two-dimensional PAGE approach,we compared protein profiles between CD133(+) and CD133(-) subpopulations isolated from Huh7 and PLC8024 and identified aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in the CD133(+) subfraction. Analysis of the expression of several different ALDH isoforms and ALDH enzymatic activity in liver cell lines found ALDH to be positively correlated with CD133 expression. Dual-color flow cytometry analysis found the majority of ALDH(+) to be CD133(+),yet not all CD133(+) HCC cells were ALDH(+). Subsequent studies on purified subpopulations found CD133(+)ALDH(+) cells to be significantly more tumorigenic than their CD133(-)ALDH(+) or CD133(-)ALDH(-) counterparts,both in vitro and in vivo. These data,combined with those from our previous work,reveal the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133(+)ALDH(+) textgreater CD133(+)ALDH(-) textgreater CD133(-)ALDH(-). ALDH,expressed along CD133,can more specifically characterize the tumorigenic liver CSC population. View Publication -
Choi K-M et al. (JUN 2008) Journal of bioscience and bioengineering 105 6 586--94Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation.
Mesenchymal stem cells (MSCs) derived from bone marrow are an important tool in tissue engineering and cell-based therapies because of their multipotent capacity. Majority of studies on MSCs have investigated the roles of growth factors,cytokines,and hormones. Antioxidants such as ascorbic acid can be used to expand MSCs while preserving their differentiation ability. Moreover,ascorbic acid can also stimulate MSC proliferation without reciprocal loss of phenotype and differentiation potency. In this study,we evaluated the effects of ascorbic acid on the proliferation,differentiation,extracellular matrix (ECM) secretion of MSCs. The MSCs were cultured in media containing various concentrations (0-500 microM) of L-ascorbate-2-phosphate (Asc-2-P) for 2 weeks,following which they were differentiated into adipocytes and osteoblasts. Ascorbic acid stimulated ECM secretion (collagen and glycosaminoglycan) and cell proliferation. Moreover,the phenotypes of the experimental groups as well as the differentiation potential of MSCs remained unchanged. The apparent absence of decreased cell density or morphologic change is consistent with the toxicity observed with 5-250 microM concentrations of Asc-2-P. The results demonstrate that MSC proliferation or differentiation depends on ascorbic acid concentration. View Publication -
Fogli M et al. (JUL 2008) PLoS pathogens 4 7 e1000101Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.
Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK) cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However,it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous,endogenously HIV-1-infected CD4+ T cells. Here,we stimulate primary CD4+ T cells,purified ex vivo from HIV-1-infected viremic patients,with PHA and rIL2 (with or without rIL-7). This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that,subsequent to the selective down-modulation of MHC class-I (MHC-I) molecules,HIV-1-infected p24(pos) blasts become partially susceptible to lysis by rIL-2-activated NK cells,while uninfected p24(neg) blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However,the degree of NK cell cytolytic activity against autologous,endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg) cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs) and with the high frequency of the anergic CD56(neg)/CD16(pos) subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively,our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos) blasts derived from primary T cells. View Publication -
Raouf A et al. (JUL 2008) Cell stem cell 3 1 109--18Transcriptome analysis of the normal human mammary cell commitment and differentiation process.
Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process,but the molecular mechanisms involved,particularly in the human mammary gland,are poorly understood. To address this issue,we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified,and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together,these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation. View Publication -
Korkaya H et al. (OCT 2008) Oncogene 27 47 6120--30HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion.
The cancer stem cell hypothesis proposes that cancers arise in stem/progenitor cells through disregulation of self-renewal pathways generating tumors,which are driven by a component of 'tumor-initiating cells' retaining stem cell properties. The HER2 gene is amplified in 20-30% of human breast cancers and has been implicated in mammary tumorigenesis as well as in mediating aggressive tumor growth and metastasis. We demonstrate that HER2 overexpression drives mammary carcinogenesis,tumor growth and invasion through its effects on normal and malignant mammary stem cells. HER2 overexpression in normal mammary epithelial cells (NMEC) increases the proportion of stem/progenitor cells as demonstrated by in vitro mammosphere assays and the expression of stem cell marker aldehyde dehydrogenase (ALDH) as well as by generation of hyperplastic lesions in humanized fat pads of NOD (nucleotide-binding oligomerization domain)/SCID (severe combined immunodeficient) mice. Overexpression of HER2 in a series of breast carcinoma cell lines increases the ALDH-expressing 'cancer stem cell' population which displays increased expression of stem cell regulatory genes,increased invasion in vitro and increased tumorigenesis in NOD/SCID mice. The effects of HER2 overexpression on breast cancer stem cells are blocked by trastuzumab in sensitive,but not resistant,cell lines,an effect mediated by the PI3-kinase/Akt pathway. These studies provide support for the cancer stem cell hypothesis by suggesting that the effects of HER2 amplification on carcinogenesis,tumorigenesis and invasion may be due to its effects on normal and malignant mammary stem/progenitor cells. Furthermore,the clinical efficacy of trastuzumab may relate to its ability to target the cancer stem cell population in HER2-amplified tumors. View Publication -
Rao R et al. (SEP 2008) Blood 112 5 1886--93HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells.
Histone deacetylase 6 (HDAC6) is a heat shock protein 90 (hsp90) deacetylase. Treatment with pan-HDAC inhibitors or depletion of HDAC6 by siRNA induces hyperacetylation and inhibits ATP binding and chaperone function of hsp90. Treatment with 17-allylamino-demothoxy geldanamycin (17-AAG) also inhibits ATP binding and chaperone function of hsp90,resulting in polyubiquitylation and proteasomal degradation of hsp90 client proteins. In this study,we determined the effect of hsp90 hyperacetylation on the anti-hsp90 and antileukemia activity of 17-AAG. Hyperacetylation of hsp90 increased its binding to 17-AAG,as well as enhanced 17-AAG-mediated attenuation of ATP and the cochaperone p23 binding to hsp90. Notably,treatment with 17-AAG alone also reduced HDAC6 binding to hsp90 and induced hyperacetylation of hsp90. This promoted the proteasomal degradation of HDAC6. Cotreatment with 17-AAG and siRNA to HDAC6 induced more inhibition of hsp90 chaperone function and depletion of BCR-ABL and c-Raf than treatment with either agent alone. In addition,cotreatment with 17-AAG and tubacin augmented the loss of survival of K562 cells and viability of primary acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) samples. These findings demonstrate that HDAC6 is an hsp90 client protein and hyperacetylation of hsp90 augments the anti-hsp90 and antileukemia effects of 17-AAG. View Publication -
Prasad VK et al. (OCT 2008) Blood 112 7 2979--89Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composition of the graft on transplantation outcomes.
Outcomes of 159 young patients with inherited metabolic disorders (IMDs) undergoing transplantation with partially HLA-mismatched unrelated donor umbilical cord blood were studied to investigate the impact of graft and patient characteristics on engraftment,overall survival (OS),and graft-versus-host disease (GVHD). Patients received myeloablative chemotherapy (busulfan,cyclophosphamide,ATG) and cyclosporine-based GVHD prophylaxis. Infused cell doses were high (7.57 x 10(7)/kg) because of the patients' young age (median,1.5 years) and small size (median,12 kg). Median follow-up was 4.2 years (range,1-11 years). The cumulative incidences of neutrophil and platelet engraftment were 87.1% (95% confidence interval [CI],81.8%-92.4%) and 71.0% (95% CI,63.7%-78.3%). A total of 97% achieved high (textgreater 90%) donor chimerism. Serum enzyme normalized in 97% of patients with diseases for which testings exist. Grade III/IV acute GVHD occurred in 10.3% (95% CI,5.4%-15.2%) of patients. Extensive chronic GVHD occurred in 10.8% (95% CI,5.7%-15.9%) of patients by 1 year. OS at 1 and 5 years was 71.8% (95% CI,64.7%-78.9%) and 58.2% (95% CI,49.7%-66.6%) in all patients and 84.5% (95% CI,77.0%-92.0%) and 75.7% (95% CI,66.1%-85.3%) in patients with high (80-100) performance score. In multivariate analysis,favorable factors for OS were high pretransplantation performance status,matched donor/recipient ethnicity,and higher infused colony forming units. View Publication -
Mathieu C et al. (AUG 2008) Molecular and cellular neurosciences 38 4 569--77Endothelial cell-derived bone morphogenetic proteins control proliferation of neural stem/progenitor cells.
Neurogenesis persists in the adult brain subventricular zone where neural stem/progenitor cells (NSPCs) lie close to brain endothelial cells (BECs). We show in mouse that BECs produce bone morphogenetic proteins (BMPs). Coculture of embryonic and adult NSPCs with BECs activated the canonical BMP/Smad pathway and reduced their proliferation. We demonstrate that coculture with BECs in the presence of EGF and FGF2 induced a reversible cell cycle exit of NSPCs (LeX+) and an increase in the amount of GFAP/LeX-expressing progenitors thought to be stem cells. Levels of the phosphatidylinositol phosphatase PTEN were upregulated in NSPCs after coculture with BECs,or treatment with recombinant BMP4,with a concomitant reduction in Akt phosphorylation. Silencing Smad5 with siRNA or treatment with Noggin,a BMP antagonist,demonstrated that upregulation of PTEN in NSPCs required BMP/Smad signaling and that this pathway regulated cell cycle exit of NSPCs. Therefore,BECs may provide a feedback mechanism to control the proliferation of NSPCs. View Publication -
Huangfu D et al. ( 2008) Nat Biotechnol 26 7 795--797Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors,but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular,valproic acid (VPA),an HDAC inhibitor,improves reprogramming efficiency by more than 100-fold,using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc. View Publication -
Reddy K et al. (JUN 2008) Molecular cancer research : MCR 6 6 929--36Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing's tumor vessels.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However,whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model,we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-),CD34+/CD45+,and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+,Sca1(-)/Gr1+,VEGFR1+,and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial,pericyte,or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors,colocalized with the tumor vascular network,and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast,human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis. View Publication -
LaMarca HL and Rosen JM (SEP 2008) Endocrinology 149 9 4317--21Minireview: hormones and mammary cell fate--what will I become when I grow up?
Systemic hormones are key regulators of postnatal mammary gland development and play an important role in the etiology and treatment of breast cancer. Mammary ductal morphogenesis is controlled by circulating hormones,and these same hormones are also critical mediators of mammary stem cell fate decisions. Recent studies have helped further our understanding of the origin,specification,and fate of mammary stem cells during postnatal development. Here we review recent studies on the involvement of hormone receptors and several transcription factors in mammary stem/progenitor cell differentiation and lineage commitment. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号