Boxall SA et al. (APR 2009)
Bone marrow transplantation 43 8 627--35
Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells.
We have demonstrated previously that cord blood CD133(+) cells isolated in the G(0) phase of the cell cycle are highly enriched for haematopoietic stem cell (HSC) activity,in contrast to CD133(+)G(1) cells. Here,we have analysed the phenotype and functional properties of this population in more detail. Our data demonstrate that a large proportion of the CD133(+)G(0) cells are CD38 negative (60.4%) and have high aldehyde dehydrogenase activity (75.1%) when compared with their CD133(+)G(1) counterparts (13.5 and 4.1%,respectively). This suggests that stem cell activity resides in the CD133(+)G(0) population. In long-term BM cultures,the CD133(+)G(0) cells generate significantly more progenitors than the CD34(+)G(0) population (Ptextless0.001) throughout the culture period. Furthermore,a comparison of CD133(+)G(0) versus CD133(+)G(1) cells revealed that multilineage reconstitution was obtained only in non-obese diabetic/SCID animals receiving G(0) cells. We conclude that CD133(+) cells in the quiescent phase of the cell cycle have a phenotype consistent with HSCs and are highly enriched for repopulating activity when compared with their G(1) counterparts. This cell population should prove useful for selection and manipulation in ex vivo expansion protocols.
View Publication
McGeary RP et al. (NOV 2008)
Mini reviews in medicinal chemistry 8 13 1384--94
Suramin: clinical uses and structure-activity relationships.
Suramin is a polysulfonated polyaromatic symmetrical urea. It is currently used to treat African river blindness and African sleeping sickness. Suramin has also been extensively trialed recently to treat a number of other diseases,including many cancers. Here,we examine its modes of action and discuss its structure-activity relationships.
View Publication
Golubovskaya VM et al. ( 2008)
Journal of medicinal chemistry 51 23 7405--7416
A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth.
Focal adhesion kinase (FAK) is a nonreceptor kinase that is overexpressed in many types of tumors. We developed a novel cancer-therapy approach,targeting the main autophosphorylation site of FAK,Y397,by computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database. More than 140,000 small molecule compounds were docked into the N-terminal domain of the FAK crystal structure in 100 different orientations that identified 35 compounds. One compound,14 (1,2,4,5-benzenetetraamine tetrahydrochloride),significantly decreased viability in most of the cells to the levels equal to or higher than control FAK inhibitor 1a (2-[5-chloro-2-[2-methoxy-4-(4-morpholinyl)phenylamino]pyrimidin-4-ylamino]-N-methylbenzamide,TAE226) from Novartis,Inc. Compound 14 specifically and directly blocked phosphorylation of Y397-FAK in a dose- and time-dependent manner. It increased cell detachment and inhibited cell adhesion in a dose-dependent manner. Furthermore,14 effectively caused breast tumor regression in vivo. Thus,targeting the Y397 site of FAK with 14 inhibitor can be effectively used in cancer therapy.
View Publication
Itabe H (AUG 2009)
Clinical reviews in allergy & immunology 37 1 4--11
Oxidative modification of LDL: its pathological role in atherosclerosis.
Oxidized low-density lipoprotein (OxLDL) is a well-known risk marker for cardiovascular diseases. OxLDL has shown a variety of proatherogenic properties in experiments performed in vitro. In addition,immunological studies using monoclonal antibodies have revealed the occurrence of OxLDL in vivo in atherosclerotic lesions and patients' plasma specimens. Resent clinical studies have indicated the prospective significance of plasma OxLDL measurements; however,the behavior and metabolism of OxLDL in vivo is poorly understood. The mechanism by which LDL is oxidized is not clear,and the modified structures of OxLDL are not yet fully understood,partly because OxLDL is a mixture of heterogeneously modified particles. Here,I discuss the recent studies on oxidative modifications in OxLDL and its clinical and pathological features.
View Publication
Shi Y et al. (NOV 2008)
Cell stem cell 3 5 568--74
Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.
Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors,Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However,several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently,it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However,NPCs express Sox2 endogenously,possibly facilitating reprogramming in the absence of exogenous Sox2. In this study,we identified a small-molecule combination,BIX-01294 and BayK8644,that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts,which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors,such as Sox2,and improve reprogramming efficiency.
View Publication
Levi BP et al. (FEB 2009)
Blood 113 8 1670--80
Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems.
High levels of aldehyde dehydrogenase (ALDH) activity have been proposed to be a common feature of stem cells. Adult hematopoietic,neural,and cancer stem cells have all been reported to have high ALDH activity,detected using Aldefluor,a fluorogenic substrate for ALDH. This activity has been attributed to Aldh1a1,an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. Nonetheless,Aldh1a1 function in stem cells has never been tested genetically. We observed that Aldh1a1 was preferentially expressed in mouse hematopoietic stem cells (HSCs) and expression increased with age. Hematopoietic cells from Aldh1a1-deficient mice exhibited increased sensitivity to cyclophosphamide in a non-cell-autonomous manner,consistent with its role in cyclophosphamide metabolism in the liver. However,Aldh1a1 deficiency did not affect hematopoiesis,HSC function,or the capacity to reconstitute irradiated recipients in young or old adult mice. Aldh1a1 deficiency also did not affect Aldefluor staining of hematopoietic cells. Finally,Aldh1a1 deficiency did not affect the function of stem cells from the adult central or peripheral nervous systems. Aldh1a1 is not a critical regulator of adult stem cell function or Aldefluor staining in mice.
View Publication
Anderson AE et al. (FEB 2009)
Journal of leukocyte biology 85 2 243--50
LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells.
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC,but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells,prerequisites for successful immunotherapy. Here,we investigated whether human tolDC,generated with dexamethasone and the active form of vitamin D3,maintained their tolerogenic function upon activation with LPS (LPS-tolDC),while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC,but not tolDC,expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore,LPS-tolDC were superior to tolDC in their ability to present type II collagen,a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic,naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype,although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.
View Publication
Snyder CM et al. (OCT 2008)
Immunity 29 4 650--9
Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.
During persistent murine cytomegalovirus (MCMV) infection,the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells,which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation,MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead,we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported,at least in part,by memory T cells primed early in infection,as well as by recruitment of naive T cells at late times. Thus,these data show that memory inflation is maintained by a continuous replacement of short-lived,functional cells during chronic MCMV infection.
View Publication
The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901.
A novel series of benzhydroxamate esters derived from their precursor anthranilic acids have been prepared and have been identified as potent MEK inhibitors. 2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide,CI-1040,was the first MEK inhibitor to demonstrate in vivo activity in preclinical animal models and subsequently became the first MEK inhibitor to enter clinical trial. CI-1040 suffered however from poor exposure due to its poor solubility and rapid clearance,and as a result,development of the compound was terminated. Optimization of the diphenylamine core and modification of the hydroxamate side chain for cell potency,solubility,and exposure with oral delivery resulted in the discovery of the clinical candidate N-(2,3-dihydroxy-propoxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide PD 0325901.
View Publication
Ucar D et al. (MAR 2009)
Chemico-biological interactions 178 1-3 48--55
Aldehyde dehydrogenase activity as a functional marker for lung cancer.
Aldehyde dehydrogenase (ALDH) activity has been implicated in multiple biological and biochemical pathways and has been used to identify potential cancer stem cells. Our main hypothesis is that ALDH activity may be a lung cancer stem cell marker. Using flow cytometry,we sorted cells with bright (ALDH(br)) and dim (ALDH(lo)) ALDH activity found in H522 lung cancer cell line. We used in vitro proliferation and colony assays as well as a xenograft animal model to test our hypothesis. Cytogenetic analysis demonstrated that the ALDH(br) cells are indeed a different clone,but when left in normal culture conditions will give rise to ALDH(lo) cells. Furthermore,the ALDH(br) cells grow slower,have low clonal efficiency,and give rise to morphologically distinct colonies. The ability to form primary xenografts in NOD/SCID mice by ALDH(br) and ALDH(lo) cells was tested by injecting single cell suspension under the skin in each flank of same animal. Tumor size was calculated weekly. ALDH1A1 and ALDH3A1 immunohistochemistry (IHC) was performed on excised tumors. These tumors were also used to re-establish cell suspension,measure ALDH activity,and re-injection for secondary and tertiary transplants. The results indicate that both cell types can form tumors but the ones from ALDH(br) cells grew much slower in primary recipient mice. Histologically,there was no significant difference in the expression of ALDH in primary tumors originating from ALDH(br) or ALDH(lo) cells. Secondary and tertiary xenografts originating from ALDH(br) grew faster and bigger than those formed by ALDH(lo) cells. In conclusion,ALDH(br) cells may have some of the traditional features of stem cells in terms of being mostly dormant and slow to divide,but require support of other cells (ALDH(lo)) to sustain tumor growth. These observations and the known role of ALDH in drug resistance may have significant therapeutic implications in the treatment of lung cancer.
View Publication
Ortiz-Sá et al. (JAN 2009)
Leukemia 23 1 59--70
Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: functional relevance of iron, the receptor, and reactive oxygen species.
The human transferrin receptor (hTfR) is a target for cancer immunotherapy due to its overexpression on the surface of cancer cells. We previously developed an antibody-avidin fusion protein that targets hTfR (anti-hTfR IgG3-Av) and exhibits intrinsic cytotoxicity against certain malignant cells. Gambogic acid (GA),a drug that also binds hTfR,induces cytotoxicity in several malignant cell lines. We now report that anti-hTfR IgG3-Av and GA induce cytotoxicity in a new broader panel of hematopoietic malignant cell lines. Our results show that the effect of anti-hTfR IgG3-Av is iron-dependent whereas that of GA is iron-independent in all cells tested. In addition,we observed that GA exerts a TfR-independent cytotoxicity. We also found that GA increases the generation of reactive oxygen species that may play a role in the cytotoxicity induced by this drug. Additive cytotoxicity was observed by simultaneous combination treatment with these drugs and synergy by using anti-hTfR IgG3-Av as a chemosensitizing agent. In addition,we found a concentration of GA that is toxic to malignant hematopoietic cells but not to human hematopoietic progenitor cells. Our results suggest that these two compounds may be effective,alone or in combination,for the treatment of human hematopoietic malignancies.
View Publication
Silva J et al. (OCT 2008)
PLoS biology 6 10 e253
Promotion of reprogramming to ground state pluripotency by signal inhibition.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However,critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog,epigenetic erasure of X chromosome silencing in female cells,and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog,reactivation of the X chromosome,transgene silencing,and competence for somatic and germline chimaerism. Using 2i /LIF,NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore,transduction with Sox2 and c-Myc is dispensable,and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
View Publication