技术资料
-
Kuo Y-H et al. (APR 2009) Blood 113 14 3323--32Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice.
The core-binding factor (CBF) is a master regulator of developmental and differentiation programs,and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study,we show that sustained expression of Runx2 modulates Cbfbeta-smooth muscle myosin heavy chain (SMMHC)-mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R,Mpo,Cebpd,the cell cycle inhibitor Cdkn1a,and myeloid markers Cebpa and Gfi1. In addition,full-length Runx2 cooperates with Cbfbeta-SMMHC in leukemia development in transplantation assays. Furthermore,we show that the nuclear matrix-targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely,Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together,these results indicate that Runx2 is expressed in the stem cell compartment,interferes with differentiation and represses CBF targets in the myeloid compartment,and modulates the leukemogenic function of Cbfbeta-SMMHC in mouse leukemia. View Publication -
Jiang T et al. (FEB 2009) Cancer research 69 3 845--54Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer.
The basic helix-loop-helix transcription factor achaete-scute complex homologue 1 (ASCL1) is essential for the development of normal lung neuroendocrine cells as well as other endocrine and neural tissues. Small cell lung cancer (SCLC) and non-SCLC with neuroendocrine features express ASCL1,where the factor may play a role in the virulence and primitive neuroendocrine phenotype of these tumors. In this study,RNA interference knockdown of ASCL1 in cultured SCLC resulted in inhibition of soft agar clonogenic capacity and induction of apoptosis. cDNA microarray analyses bolstered by expression studies,flow cytometry,and chromatin immunoprecipitation identified two candidate stem cell marker genes,CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1),to be directly regulated by ASCL1 in SCLC. In SCLC direct xenograft tumors,we detected a relatively abundant CD133(high)-ASCL1(high)-ALDH1(high) subpopulation with markedly enhanced tumorigenicity compared with cells with weak CD133 expression. Tumorigenicity in the CD133(high) subpopulation depended on continued ASCL1 expression. Whereas CD133(high) cells readily reconstituted the range of CD133 expression seen in the original xenograft tumor,CD133(low) cells could not. Our findings suggest that a broad range of SCLC cells has tumorigenic capacity rather than a small discrete population. Intrinsic tumor cell heterogeneity,including variation in key regulatory factors such as ASCL1,can modulate tumorigenicity in SCLC. View Publication -
Jimeno A et al. (FEB 2009) Molecular cancer therapeutics 8 2 310--4A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development.
There is an enormous gap between the antiproliferative and in vivo antitumor efficacy of gemcitabine in cell line-based models and its clinical efficacy. This may be due to insensitiveness of the precursor,cancer stem cell (CSC) compartment to cytotoxic agents. The hedgehog pathway is associated with CSC signaling and control. We used a direct xenograft model of pancreatic cancer and a two-stage approach was used to test the hypotheses that targeting CSC could increase the efficacy of gemcitabine. Tumors from a gemcitabine-sensitive xenograft were treated with gemcitabine first,and randomized,after tumor regression to continuing treatment with gemcitabine,a hedgehog inhibitor alone or in combination with gemcitabine. We tested markers described as associated with CSC such as CD24,CD44,ALDH,nestin,and the hedgehog pathway. After induction with gemcitabine,treated tumor showed an enrichment in CSC markers such as ALDH and CD24. Subsequently,a release from gemcitabine prompted a repopulation of proliferating cells and a decrease in such markers to equilibrate from pretreatment levels. Combined treatment with gemcitabine and cyclopamine induced tumor regression and decrease in CSC markers and hedgehog signaling. Cytoplasmic CD24 and ALDH were inversely and strongly associated with growth and were expressed in a minority of cells that we propose constitute the CSC compartment. Hedgehog inhibitors as part of a dual compartment therapeutic approach were able to further reduce tumor growth and decreased both static and dynamic markers of CSC. Direct tumor xenografts are a valid platform to test multicompartment therapeutic approaches in pancreatic cancer. View Publication -
Tipping AJ et al. (MAR 2009) Blood 113 12 2661--72High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle.
Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here,we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G(0) residency) of murine and human hematopoietic cells. In human cord blood,quiescent fractions (CD34(+)CD38(-)Hoechst(lo)Pyronin Y(lo)) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells,reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF,but enforcing MEF expression does not prevent GATA-2-conferred quiescence,suggesting additional regulators are involved. Although known quiescence regulators p21(CIP1) and p27(KIP1) do not appear to be responsible,enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3,CDK4,and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2(hi)) failed to contribute to hematopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice,whereas GATA-2(lo) cells contributed with delayed kinetics and low efficiency,with reduced expression of Ki-67. Thus,GATA-2 activity inhibits cell cycle in vitro and in vivo,highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells. View Publication -
Stankiewicz MJ and Crispino JD (APR 2009) Blood 113 14 3337--47ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells.
ETS2 and ERG are transcription factors,encoded on human chromosome 21 (Hsa21),that have been implicated in human cancer. People with Down syndrome (DS),who are trisomic for Hsa21,are predisposed to acute megakaryoblastic leukemia (AMKL). DS-AMKL blasts harbor a mutation in GATA1,which leads to loss of full-length protein but expression of the GATA-1s isoform. To assess the consequences of ETS protein misexpression on megakaryopoiesis,we expressed ETS2,ERG,and the related protein FLI-1 in wild-type and Gata1 mutant murine fetal liver progenitors. These studies revealed that ETS2,ERG,and FLI-1 facilitated the expansion of megakaryocytes from wild-type,Gata1-knockdown,and Gata1s knockin progenitors,but none of the genes could overcome the differentiation block characteristic of the Gata1-knockdown megakaryocytes. Although overexpression of ETS proteins increased the proportion of CD41(+) cells generated from Gata1s-knockin progenitors,their expression led to a significant reduction in the more mature CD42 fraction. Serial replating assays revealed that overexpression of ERG or FLI-1 immortalized Gata1-knockdown and Gata1s knockin,but not wild-type,fetal liver progenitors. Immortalization was accompanied by activation of the JAK/STAT pathway,commonly seen in megakaryocytic malignancies. These findings provide evidence for synergy between alterations in GATA-1 and overexpression of ETS proteins in aberrant megakaryopoiesis. View Publication -
Al-Ali H et al. (MAY 2013) ACS chemical biology 8 5 1027--36Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion.
The Rho subgroup of the Rho GTPases consisting of RhoA,RhoB and RhoC induces a specific type of actin cytoskeleton and carry out a variety of functions in the cell. mDia and ROCK are downstream effectors of Rho mediating Rho action on the actin cytoskeleton; mDia produces actin filaments by nucleation and polymerization and ROCK activate myosin to cross-link them for induction of actomyosin bundles and contractility. mDia is potentially linked to Rac activation and membrane ruffle formation through c-Src-induced phosphorylation of focal adhesion proteins,and ROCK antagonizes this mDia action. Thus,cell morphogenesis,adhesion,and motility can be determined by the balance between mDia and ROCK activities. Though they are not oncogenes by themselves,overexpression of RhoA and RhoC are often found in clinical cancers,and RhoC has been repeatedly identified as a gene associated with metastasis. The Rho-ROCK pathway is implicated in Ras-mediated transformation,the amoeboid movement of tumor cells in the three-dimensional matrix,and transmigration of tumor cells through the mesothelial monolayer. On the other hand,the Rho-mDia1 pathway is implicated in Src-mediated remodeling of focal adhesions and migration of tumor cells. There is also an indication that the Rho pathway other than ROCK is involved in Src-mediated induction of podosome and regulation of matrix metalloproteases. Thus,Rho mediates various phenotypes of malignant transformation by Ras and Src through its effectors,ROCK and mDia. View Publication -
Zhang P et al. (FEB 2009) Journal of immunology (Baltimore,Md. : 1950) 182 3 1568--76Acute alcohol intoxication inhibits the lineage- c-kit+ Sca-1+ cell response to Escherichia coli bacteremia.
Alcohol abuse predisposes the host to bacterial infections. In response to bacterial infection,the bone marrow hematopoietic activity shifts toward granulocyte production,which is critical for enhancing host defense. This study investigated the hematopoietic precursor cell response to bacteremia and how alcohol affects this response. Acute alcohol intoxication was induced in BALB/c mice 30 min before initiation of Escherichia coli bacteremia. Bacteremia caused a significant increase in the number of bone marrow lineage (lin(-))-c-kit(+)Sca-1(+) cells. Marrow lin(-)c-kit(+)Sca-1(+) cells isolated from bacteremic mice showed an increase in CFU-granulocyte/macrophage activity compared with controls. In addition to enhanced proliferation of lin(-)c-kit(+)Sca-1(+) cells as reflected by BrdU incorporation,phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells primarily accounted for the rapid increase in marrow lin(-)c-kit(+)Sca-1(+) cells following bacteremia. Bacteremia increased plasma concentration of TNF-alpha. Culture of marrow lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells with murine rTNF-alpha for 24 h caused a dose-dependent increase in conversion of these cells to lin(-)c-kit(+)Sca-1(+) cells. Sca-1 mRNA expression by the cultured cells was also up-regulated following TNF-alpha stimulation. Acute alcohol intoxication inhibited the increase in the number of lin(-)c-kit(+)Sca-1(+) cells in the bone marrow after E. coli infection. Alcohol impeded the increase in BrdU incorporation into marrow lin(-)c-kit(+)Sca-1(+) cells in response to bacteremia. Alcohol also suppressed the plasma TNF-alpha response to bacteremia and inhibited TNF-alpha-induced phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells in vitro. These data show that alcohol inhibits the hematopoietic precursor cell response to bacteremia,which may serve as one mechanism underlying the impaired host defense in alcohol abusers with severe bacterial infections. View Publication -
Sunahori K et al. (FEB 2009) Journal of immunology (Baltimore,Md. : 1950) 182 3 1500--8Methylation status of CpG islands flanking a cAMP response element motif on the protein phosphatase 2Ac alpha promoter determines CREB binding and activity.
Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and is involved in many essential aspects of cell function. The catalytic subunit of the enzyme (PP2Ac),a part of the core enzyme,has two isoforms,alpha (PP2Ac alpha) and beta (PP2Ac beta),of which PP2Ac alpha is the major form expressed in vivo. Deregulation of PP2A expression has been linked to several diseases,but the mechanisms that control the expression of this enzyme are still unclear. We conducted experiments to decipher molecular mechanisms involved in the regulation of the PP2Ac alpha promoter in human primary T cells. After preparing serially truncated PP2Ac alpha promoter luciferase constructs,we found that the region stretching around 240 bases upstream from the translation initiation site was of functional significance and included a cAMP response element motif flanked by three GC boxes. Shift assays revealed that CREB/phosphorylated CREB and stable protein 1 could bind to the region. Furthermore,we demonstrated that methylation of deoxycytosine in the CpG islands limited binding of phosphorylated CREB and the activity of the PP2Ac alpha promoter. In contrast,the binding of stable protein 1 to a GC box within the core promoter region was not affected by DNA methylation. Primary T cells treated with 5-azacitidine,a DNA methyltransferase inhibitor,showed increased expression of PP2Ac alpha mRNA. We propose that conditions associated with hypomethylation of CpG islands,such as drug-induced lupus,permit increased PP2Ac expression. View Publication -
Markoulaki S et al. (FEB 2009) Nature biotechnology 27 2 169--71Transgenic mice with defined combinations of drug-inducible reprogramming factors.
Proviruses carrying drug-inducible Oct4,Sox2,Klf4 and c-Myc used to derive 'primary' induced pluripotent stem (iPS) cells were segregated through germline transmission,generating mice and cells carrying subsets of the reprogramming factors. Drug treatment produced 'secondary' iPS cells only when the missing factor was introduced. This approach creates a defined system for studying reprogramming mechanisms and allows screening of genetically homogeneous cells for compounds that can replace any transcription factor required for iPS cell derivation. View Publication -
Lin H et al. (MAR 2009) Experimental biology and medicine (Maywood,N.J.) 234 3 342--53Maitake beta-glucan enhances umbilical cord blood stem cell transplantation in the NOD/SCID mouse.
Beta glucans are cell wall constituents of yeast,fungi and bacteria,as well as mushrooms and barley. Glucans are not expressed on mammalian cells and are recognized as pathogen-associated molecular patterns (PAMPS) by pattern recognition receptors (PRR). Beta glucans have potential activity as biological response modifiers for hematopoiesis and enhancement of bone marrow recovery after injury. We have reported that Maitake beta glucan (MBG) enhanced mouse bone marrow (BMC) and human umbilical cord blood (CB) cell granulocyte-monocyte colony forming unit (GM-CFU) activity in vitro and protected GM-CFU forming stem cells from doxorubicin (DOX) toxicity. The objective of this study was to determine the effects of MBG on expansion of phenotypically distinct subpopulations of progenitor and stem cells in CB from full-term infants cultured ex vivo and on homing and engraftment in vivo in the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse. MBG promoted a greater expansion of CD34+CD33+CD38- human committed hematopoietic progenitor (HPC) cells compared to the conventional stem cell culture medium (P = 0.002 by ANOVA). CD34+CXCR4+CD38- early,uncommitted human hematopoietic stem cell (HSC) numbers showed a trend towards increase in response to MBG. The fate of CD34+ enriched CB cells after injection into the sublethally irradiated NOS/SCID mouse was evaluated after retrieval of xenografted human CB from marrow and spleen by flow cytometric analysis. Oral administration of MBG to recipient NOS/SCID mice led to enhanced homing at 3 days and engraftment at 6 days in mouse bone marrow (P = 0.002 and P = 0.0005,respectively) compared to control mice. More CD34+ human CB cells were also retrieved from mouse spleen in MBG treated mice at 6 days after transplantation. The studies suggest that MBG promotes hematopoiesis through effects on CD34+ progenitor cell expansion ex vivo and when given to the transplant recipient could enhance CD34+ precursor cell homing and support engraftment. View Publication -
Burger R et al. ( 2009) Molecular Cancer Therapeutics 8 1 26--35Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo
Protein tyrosine kinases of the Janus kinase (JAK) family are associated with many cytokine receptors,which,on ligand binding,regulate important cellular functions such as proliferation,survival,and differentiation. In multiple myeloma,JAKs may be persistently activated due to a constant stimulation by interleukin (IL)-6,which is produced in the bone marrow environment. INCB20 is a synthetic molecule that potently inhibits all members of the JAK family with a 100- to 1,000-fold selectivity for JAKs over textgreater70 other kinases. Treatment of multiple myeloma cell lines and patient tumor cells with INCB20 resulted in a significant and dose-dependent inhibition of spontaneous as well as IL-6-induced cell growth. Importantly,multiple myeloma cell growth was inhibited in the presence of bone marrow stromal cells. The IL-6 dependent cell line INA-6 was particularly sensitive to the drug (IC50textless1 micromol/L). Growth suppression of INA-6 correlated with an increase in the percentage of apoptotic cells and inhibition of signal transducer and activator of transcription 3 phosphorylation. INCB20 also abrogated the protective effect of IL-6 against dexamethasone by blocking phosphorylation of SHP-2 and AKT. In contrast,AKT phosphorylation induced by insulin-like growth factor-I remained unchanged,showing selectivity of the compound. In a s.c. severe combined immunodeficient mouse model with INA-6,INCB20 significantly delayed INA-6 tumor growth. Our studies show that disruption of JAKs and downstream signaling pathways may both inhibit multiple myeloma cell growth and survival and overcome cytokine-mediated drug resistance,thereby providing the preclinical rationale for the use of JAK inhibitors as a novel therapeutic approach in multiple myeloma. View Publication -
Hakala H et al. (JUL 2009) Tissue engineering Part A 15 7 1775--85Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines
Long-term in vitro culture of undifferentiated human embryonic stem cells (hESCs) traditionally requires a fibroblast feeder cell layer. Using feeder cells in hESC cultures is highly laborious and limits large-scale hESC production for potential application in regenerative medicine. Replacing feeder cells with defined human extracellular matrix (ECM) components or synthetic biomaterials would be ideal for large-scale production of clinical-grade hESCs. We tested and compared different feeder cell-free hESC culture methods based on different human ECM proteins,human and animal sera matrices,and a Matrigel matrix. Also selected biomaterials were tested for feeder cell-free propagation of undifferentiated hESCs. The matrices were tested together with conventional and modified hESC culture media,human foreskin fibroblast-conditioned culture medium,chemically defined medium,TeSR1,and modified TeSR1 media. The results showed the undefined,xenogeneic Matrigel to be a superior matrix for hESC culture compared with the purified human ECM proteins,serum matrices,and the biomaterials tested. A long-term,feeder cell-free culture system was successful on Matrigel in combination with mTeSR1 culture medium,but a xeno-free,fully defined,and reproducible feeder cell-free hESC culture method still remains to be developed. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号