Chen Y et al. (MAY 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 10 6031--43
IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells.
Natural Abs,which arise without known immune exposure,have been described that specifically recognize cells dying from apoptosis,but their role in innate immunity remains poorly understood. Herein,we show that the immune response to neoantigenic determinants on apoptotic thymocytes is dominated by Abs to oxidation-associated Ags,phosphorylcholine (PC),a head group that becomes exposed during programmed cell death,and malondialdehyde (MDA),a reactive aldehyde degradation product of polyunsaturated lipids produced following exposure to reactive oxidation species. While natural Abs to apoptotic cells in naive adult mice were dominated by PC and MDA specificities,the amounts of these Abs were substantially boosted by treatment of mice with apoptotic cells. Moreover,the relative amounts of PC and MDA Abs was affected by V(H) gene inheritance. Ab interactions with apoptotic cells also mediated the recruitment of C1q,which enhanced apoptotic cell phagocytosis by immature dendritic cells. Significantly,IgM Abs to both PC and MDA were primary factors in determining the efficiency of serum-dependent apoptotic cell phagocytosis. Hence,we demonstrate a mechanism by which certain natural Abs that recognize neoantigens on apoptotic cells,in naive mice and those induced by immune exposure to apoptotic cells,can enhance the functional capabilities of immature dendritic cells for phagocytic engulfment of apoptotic cells.
View Publication
Mostert B et al. (AUG 2009)
Cancer treatment reviews 35 5 463--74
Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer.
The enumeration of circulating tumor cells has long been regarded as an attractive diagnostic tool,as circulating tumor cells are thought to reflect aggressiveness of the tumor and may assist in therapeutic decisions in patients with solid malignancies. However,implementation of this assay into clinical routine has been cumbersome,as a validated test was not available until recently. Circulating tumor cells are rare events which can be detected specifically only by using a combination of surface and intracellular markers,and only recently a number of technical advances have made their reliable detection possible. Most of these new techniques rely on a combination of an enrichment and a detection step. This review addresses the assays that have been described so far in the literature,including the enrichment and detection steps and the markers used in these assays. We have focused on breast cancer as most clinical studies on CTC detection so far have been done in these patients.
View Publication
Oh SKW et al. (MAY 2009)
Stem Cell Research 2 3 219--230
Long-term microcarrier suspension cultures of human embryonic stem cells
The conventional method of culturing human embryonic stem cells (hESC) is on two-dimensional (2D) surfaces,which is not amenable for scale up to therapeutic quantities in bioreactors. We have developed a facile and robust method for maintaining undifferentiated hESC in three-dimensional (3D) suspension cultures on matrigel-coated microcarriers achieving 2- to 4-fold higher cell densities than those in 2D colony cultures. Stable,continuous propagation of two hESC lines on microcarriers has been demonstrated in conditioned media for 6 months. Microcarrier cultures (MC) were also demonstrated in two serum-free defined media (StemPro and mTeSR1). MC achieved even higher cell concentrations in suspension spinner flasks,thus opening the prospect of propagation in controlled bioreactors. ?? 2009 Elsevier B.V. All rights reserved.
View Publication
Masaki H et al. (NOV 2008)
Stem Cell Research 1 2 105--115
Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture
Induction of pluripotent stem cells from human fibroblasts has been achieved by the ectopic expression of two different sets of four genes. However,the mechanism of the pluripotent stem cell induction has not been elucidated. Here we identified a marked heterogeneity in colonies generated by the four-gene (Oct3/4,Sox2,c-Myc,and Klf4) transduction method in human neonatal skin-derived cells. The four-gene transduction gave a higher probability of induction for archetypal pluripotent stem cell marker genes (Nanog,TDGF,and Dnmt3b) than for marker genes that are less specific for pluripotent stem cells (CYP26A1 and TERT) in primary induction culture. This tendency may reflect the molecular mechanism underlying the induction of human skin-derived cells into pluripotent stem cells. Among the colonies induced by the four-gene transduction,small cells with a high nucleus-to-cytoplasm ratio could be established by repeated cloning. Subsequently established cell lines were similar to human embryonic stem cells as well as human induced pluripotent stem (iPS) cells derived from adult tissue in morphology,gene expression,long-term self-renewal ability,and teratoma formation. Genome-wide single-nucleotide polymorphism array analysis of the human iPS cell line indicates that the induction process did not induce DNA mutation. ?? 2008 Elsevier B.V. All rights reserved.
View Publication
Heringer-Walther S et al. (JUN 2009)
Haematologica 94 6 857--60
Angiotensin-(1-7) stimulates hematopoietic progenitor cells in vitro and in vivo.
Effects of angiotensin (Ang)-(1-7),an AngII metabolite,on bone marrow-derived hematopoietic cells were studied. We identified Ang-(1-7) to stimulate proliferation of human CD34(+) and mononuclear cells in vitro. Under in vivo conditions,we monitored proliferation and differentiation of human cord blood mononuclear cells in NOD/SCID mice. Ang-(1-7) stimulated differentially human cells in bone marrow and accumulated them in the spleen. The number of HLA-I(+) and CD34(+) cells in the bone marrow was increased 42-fold and 600-fold,respectively. These results indicate a decisive impact of Ang-(1-7) on hematopoiesis and its promising therapeutic potential in diseases requiring progenitor stimulation.
View Publication
Jankowska AM et al. (JUN 2009)
Blood 113 25 6403--10
Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms.
Chromosomal abnormalities are frequent in myeloid malignancies,but in most cases of myelodysplasia (MDS) and myeloproliferative neoplasms (MPN),underlying pathogenic molecular lesions are unknown. We identified recurrent areas of somatic copy number-neutral loss of heterozygosity (LOH) and deletions of chromosome 4q24 in a large cohort of patients with myeloid malignancies including MDS and related mixed MDS/MPN syndromes using single nucleotide polymorphism arrays. We then investigated genes in the commonly affected area for mutations. When we sequenced TET2,we found homozygous and hemizygous mutations. Heterozygous and compound heterozygous mutations were found in patients with similar clinical phenotypes without LOH4q24. Clinical analysis showed most TET2 mutations were present in patients with MDS/MPN (58%),including CMML (6/17) or sAML (32%) evolved from MDS/MPN and typical MDS (10%),suggesting they may play a ubiquitous role in malignant evolution. TET2 mutations affected conserved domains and the N terminus. TET2 is widely expressed in hematopoietic cells but its function is unknown,and it lacks homology to other known genes. The frequency of mutations in this candidate myeloid regulatory gene suggests an important role in the pathogenesis of poor prognosis MDS/MPN and sAML and may act as a disease gene marker for these often cytogenetically normal disorders.
View Publication
Kim S-W et al. (JUN 2009)
Blood 113 24 6153--60
Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL.
Identification of rational therapeutic targets is an important strategy to improve the cure rate of diffuse large B-cell lymphoma (DLBCL). We previously showed that inhibition of the phosphodiesterase 4B (PDE4B) unleashes cyclic-AMP (cAMP) inhibitory effects toward the PI3K/AKT pathway and induces apoptosis. These data raised important considerations as to which upstream regulators mediate cAMP inhibition of PI3K/AKT,and how identifying this signaling route could be translated into clinical initiatives. We found that in normal and malignant B cells,cAMP potently inhibit the phosphorylation and activity of the tyrosine kinase SYK. Using genetic models of gain- and loss-of-function,we demonstrated the essential role for PDE4B in controlling these effects in DLBCL. Furthermore,we used a constitutively active SYK mutant to confirm its central role in transducing cAMP effects to PI3K/AKT. Importantly,given SYK credentials as a therapeutic target in B-cell tumors,we explored the role of PDE4B in these responses. In multiple DLBCL models,we found that genetically,hence specifically,inhibiting PDE4B expression significantly improved the efficacy of SYK inhibitors. Our data defined a hitherto unknown role for cAMP in negatively regulating SYK and indicate that combined inhibition of PDE4B and SYK should be actively pursued.
View Publication
Zhao H et al. (JUN 2009)
Blood 113 23 5747--56
Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However,transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT),driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs,which can be administered to kill residual untransduced,diseased HSCs,whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells,transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin,leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
View Publication
Karumbayaram S et al. (APR 2009)
Stem cells (Dayton,Ohio) 27 4 806--11
Directed differentiation of human-induced pluripotent stem cells generates active motor neurons.
The potential for directed differentiation of human-induced pluripotent stem (iPS) cells to functional postmitotic neuronal phenotypes is unknown. Following methods shown to be effective at generating motor neurons from human embryonic stem cells (hESCs),we found that once specified to a neural lineage,human iPS cells could be differentiated to form motor neurons with a similar efficiency as hESCs. Human iPS-derived cells appeared to follow a normal developmental progression associated with motor neuron formation and possessed prototypical electrophysiological properties. This is the first demonstration that human iPS-derived cells are able to generate electrically active motor neurons. These findings demonstrate the feasibility of using iPS-derived motor neuron progenitors and motor neurons in regenerative medicine applications and in vitro modeling of motor neuron diseases.
View Publication
Morabito A et al. ( 2009)
The oncologist 14 4 378--390
Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.
Vandetanib is a novel,orally available inhibitor of different intracellular signaling pathways involved in tumor growth,progression,and angiogenesis: vascular endothelial growth factor receptor-2,epidermal growth factor receptor,and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses textless or =300 mg. In the phase II setting,negative results were observed with vandetanib in small cell lung cancer,metastatic breast cancer,and multiple myeloma. In contrast,three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash,diarrhea,hypertension,fatigue,and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel,the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial,or with pemetrexed,the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial,or as a single agent,the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials,the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis,but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule,the optimal setting of evaluation,and the safety of long-term use of vandetanib.
View Publication
Graham JD et al. (JUL 2009)
Endocrinology 150 7 3318--26
DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast.
Proliferation in the nonpregnant human breast is highest in the luteal phase of the menstrual cycle when serum progesterone levels are high,and exposure to progesterone analogues in hormone replacement therapy is known to elevate breast cancer risk,yet the proliferative effects of progesterone in the human breast are poorly understood. In a model of normal human breast,we have shown that progesterone increased incorporation of 5-bromo-2'-deoxyuridine and increased cell numbers by activation of pathways involved in DNA replication licensing,including E2F transcription factors,chromatin licensing and DNA replication factor 1 (Cdt1),and the minichromosome maintenance proteins and by increased expression of proteins involved in kinetochore formation including Ras-related nuclear protein (Ran) and regulation of chromosome condensation 1 (RCC1). Progenitor cells competent to give rise to both myoepithelial and luminal epithelial cells were increased by progesterone,showing that progesterone influences epithelial cell lineage differentiation. Therefore,we have demonstrated that progesterone augments proliferation of normal human breast cells by both activating DNA replication licensing and kinetochore formation and increasing bipotent progenitor numbers.
View Publication
Borowiak M et al. (APR 2009)
Cell stem cell 4 4 348--58
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives,including lung,liver,and pancreas,are of interest for regenerative medicine,but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds,two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm,a higher efficiency than that achieved by Activin A or Nodal,commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers,can participate in normal development when injected into developing embryos,and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
View Publication