技术资料
-
Maenhaut C et al. (FEB 2010) Carcinogenesis 31 2 149--58Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis.
The concept of cancer stem cells (CSC) embodies two aspects: the stem cell as the initial target of the oncogenic process and the existence of two populations of cells in cancers: the CSC and derived cells. The second is discussed in this review. CSC are defined as cells having three properties: a selectively endowed tumorigenic capacity,an ability to recreate the full repertoire of cancer cells of the parent tumor and the expression of a distinctive repertoire of surface biomarkers. In operational terms,the CSC are among all cancer cells those able to initiate a xenotransplant. Other explicit or implicit assumptions exist,including the concept of CSC as a single unique infrequent population of cells. To avoid such assumptions,we propose to use the operational term tumor-propagating cells (TPC); indeed,the cells that initiate transplants did not initiate the cancer. The experimental evidence supporting the explicit definition is analyzed. Cancers indeed contain a fraction of cells mainly responsible for the tumor development. However,there is evidence that these cells do not represent one homogenous population. Moreover,there is no evidence that the derived cells result from an asymmetric,qualitative and irreversible process. A more general model is proposed of which the CSC model could be one extreme case. We propose that the TPC are multiple evolutionary selected cancer cells with the most competitive properties [maintained by (epi-)genetic mechanisms],at least partially reversible,quantitative rather than qualitative and resulting from a stochastic rather than deterministic process. View Publication -
Aichberger KJ et al. (DEC 2009) Blood 114 26 5342--51Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs.
Systemic mastocytosis (SM) is a myeloid neoplasm involving mast cells (MCs) and their progenitors. In most cases,neoplastic cells display the D816V-mutated variant of KIT. KIT D816V exhibits constitutive tyrosine kinase (TK) activity and has been implicated in increased survival and growth of neoplastic MCs. Recent data suggest that the proapoptotic BH3-only death regulator Bim plays a role as a tumor suppressor in various myeloid neoplasms. We found that KIT D816V suppresses expression of Bim in Ba/F3 cells. The KIT D816-induced down-regulation of Bim was rescued by the KIT-targeting drug PKC412/midostaurin. Both PKC412 and the proteasome-inhibitor bortezomib were found to decrease growth and promote expression of Bim in MC leukemia cell lines HMC-1.1 (D816V negative) and HMC-1.2 (D816V positive). Both drugs were also found to counteract growth of primary neoplastic MCs. Furthermore,midostaurin was found to cooperate with bortezomib and with the BH3-mimetic obatoclax in producing growth inhibition in both HMC-1 subclones. Finally,a Bim-specific siRNA was found to rescue HMC-1 cells from PKC412-induced cell death. Our data show that KIT D816V suppresses expression of proapoptotic Bim in neoplastic MCs. Targeting of Bcl-2 family members by drugs promoting Bim (re)-expression,or by BH3-mimetics such as obatoclax,may be an attractive therapy concept in SM. View Publication -
Jean E et al. (JAN 2011) Journal of cellular and molecular medicine 15 1 119--33Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells.
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties,we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR,a fluorescent substrate for ALDH,and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56(+) fraction in those cells,but,we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly,ALDH activity and Aldh1a1 expression levels were very low in mouse,rat,rabbit and non-human primate myoblasts. Using different approaches,from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde,an inhibitor of class I ALDH,to cell fractionation by flow cytometry using the ALDEFLUOR assay,we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H(2) O(2) )-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity,as a purification strategy,could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. View Publication -
Lin T et al. (NOV 2009) Nature methods 6 11 805--8A chemical platform for improved induction of human iPSCs.
The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts,within seven days of treatment. This will provide a basis for developing safer,more efficient,nonviral methods for reprogramming human somatic cells. View Publication -
Yamaji D et al. (OCT 2009) Genes & development 23 20 2382--7Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A.
Mammary alveologenesis is abrogated in the absence of the transcription factors STAT5A/5B,which mediate cytokine signaling. To reveal the underlying causes for this developmental block,we studied mammary stem and progenitor cells. While loss of STAT5A/5B did not affect the stem cell population and its ability to form mammary ducts,luminal progenitors were greatly reduced and unable to form alveoli during pregnancy. Temporally controlled expression of transgenic STAT5A in mammary epithelium lacking STAT5A/5B restored the luminal progenitor population and rescued alveologenesis in a reversible fashion in vivo. Thus,STAT5A is necessary and sufficient for the establishment of luminal progenitor cells. View Publication -
Lister R et al. (NOV 2009) Nature 462 7271 315--22Human DNA methylomes at base resolution show widespread epigenomic differences.
DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation,development and disease. Here we present the first genome-wide,single-base-resolution maps of methylated cytosines in a mammalian genome,from both human embryonic stem cells and fetal fibroblasts,along with comparative analysis of messenger RNA and small RNA components of the transcriptome,several histone modifications,and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context,suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells,and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation,and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development. View Publication -
Benziane B et al. ( 2009) American journal of physiology. Cell physiology 297 6 C1554--66AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase.
Muscle contraction and metabolic stress are potent activators of AMP-activated protein kinase (AMPK). AMPK restores energy balance by activating processes that produce energy while inhibiting those that consume energy. The role of AMPK in the regulation of active ion transport is unclear. Our aim was to determine the effect of the AMPK activator A-769662 on Na(+)-K(+)-ATPase function in skeletal muscle cells. Short-term incubation of differentiated rat L6 myotubes with 100 microM A-769662 increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in parallel with decreased Na(+)-K(+)-ATPase alpha(1)-subunit abundance at the plasma membrane and ouabain-sensitive (86)Rb(+) uptake. Notably,the effect of A-769662 on Na(+)-K(+)-ATPase was similar in muscle cells that do not express AMPK alpha(1)- and alpha(2)-catalytic subunits. A-769662 directly inhibits the alpha(1)-isoform of the Na(+)-K(+)-ATPase,purified from rat and human kidney cells in vitro with IC(50) 57 microM and 220 microM,respectively. Inhibition of the Na(+)-K(+)-ATPase by 100 microM ouabain decreases sodium pump activity and cell surface abundance,similar to the effect of A-769662,without affecting AMPK and ACC phosphorylation. In conclusion,the AMPK activator A-769662 inhibits Na(+)-K(+)-ATPase activity and decreases the sodium pump cell surface abundance in L6 skeletal muscle cells. The effect of A-769662 on sodium pump is due to direct inhibition of the Na(+)-K(+)-ATPase activity,rather than AMPK activation. This AMPK-independent effect on Na(+)-K(+)-ATPase calls into question the use of A-769662 as a specific AMPK activator for metabolic studies. View Publication -
Wang X et al. (DEC 2009) Journal of Biological Chemistry 284 49 34054--34064Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells
Apoptosis and proliferation are two dynamically and tightly regulated processes that together maintain the homeostasis of renewable tissues. Anoikis is a subtype of apoptosis induced by detachment of adherent cells from the extracellular matrix. By using the defined mTeSR1 medium and collecting freshly detached cells,we found here that human pluripotent stem (PS) cells including embryonic stem (ES) cells and induced pluripotent stem cells are subject to constant anoikis in culture,which is escalated in the absence of basic fibroblast growth factor (bFGF). Withdrawal of bFGF also promotes apoptosis and differentiation of the remaining adherent cells without affecting their cell cycle progression. Insulin-like growth factor 2 (IGF2) has previously been reported to act downstream of FGF signaling to support self-renewal of human ES cells. However,we found that IGF2 cannot substitute bFGF in the TeSR1-supported culture,although endogenous IGF signaling is required to sustain self-renewal of human ES cells. On the other hand,all of the bFGF withdrawal effects observed here can be markedly prevented by the caspase inhibitor z-VAD-FMK. We further demonstrated that the bFGF-repressed anoikis is dependent on activation of ERK and AKT and associated with inhibition of Bcl-2-interacting mediator of cell death and the caspase-ROCK1-myosin signaling. Anoikis is independent of pre-detachment apoptosis and differentiation of the cells. Because previous studies of human PS cells have been focused on attached cells,our findings revealed a neglected role of bFGF in sustaining self-renewal of human PS cells: preventing them from anoikis via inhibition of caspase activation. View Publication -
Korur S et al. (JAN 2009) PloS one 4 10 e7443GSK3beta regulates differentiation and growth arrest in glioblastoma.
Cancers are driven by a population of cells with the stem cell properties of self-renewal and unlimited growth. As a subpopulation within the tumor mass,these cells are believed to constitute a tumor cell reservoir. Pathways controlling the renewal of normal stem cells are deregulated in cancer. The polycomb group gene Bmi1,which is required for neural stem cell self-renewal and also controls anti-oxidant defense in neurons,is upregulated in several cancers,including medulloblastoma. We have found that Bmi1 is consistently and highly expressed in GBM. Downregulation of Bmi1 by shRNAs induced a differentiation phenotype and reduced expression of the stem cell markers Sox2 and Nestin. Interestingly,expression of glycogen synthase kinase 3 beta (GSK3beta),which was found to be consistently expressed in primary GBM,also declined. This suggests a functional link between Bmi1 and GSK3beta. Interference with GSK3beta activity by siRNA,the specific inhibitor SB216763,or lithium chloride (LiCl) induced tumor cell differentiation. In addition,tumor cell apoptosis was enhanced,the formation of neurospheres was impaired,and clonogenicity reduced in a dose-dependent manner. GBM cell lines consist mainly of CD133-negative (CD133-) cells. Interestingly,ex vivo cells from primary tumor biopsies allowed the identification of a CD133- subpopulation of cells that express stem cell markers and are depleted by inactivation of GSK3beta. Drugs that inhibit GSK3,including the psychiatric drug LiCl,may deplete the GBM stem cell reservoir independently of CD133 status. View Publication -
Wang P-S et al. (NOV 2009) The Journal of biological chemistry 284 48 33692--702Protein-tyrosine phosphatase alpha acts as an upstream regulator of Fyn signaling to promote oligodendrocyte differentiation and myelination.
The tyrosine kinase Fyn plays a key role in oligodendrocyte differentiation and myelination in the central nervous system,but the molecules responsible for regulating Fyn activation in these processes remain poorly defined. Here we show that receptor-like protein-tyrosine phosphatase alpha (PTPalpha) is an important positive regulator of Fyn activation and signaling that is required for the differentiation of oligodendrocyte progenitor cells (OPCs). PTPalpha is expressed in OPCs and is up-regulated during differentiation. We used two model systems to investigate the role of PTPalpha in OPC differentiation: the rat CG4 cell line where PTPalpha expression was silenced by small interfering RNA,and oligosphere-derived primary OPCs isolated from wild-type and PTPalpha-null mouse embryos. In both cell systems,the ablation of PTPalpha inhibited differentiation and morphological changes that accompany this process. Although Fyn was activated upon induction of differentiation,the level of activation was severely reduced in cells lacking PTPalpha,as was the activation of Fyn effector molecules focal adhesion kinase,Rac1,and Cdc42,and inactivation of Rho. Interestingly,another downstream effector of Fyn,p190RhoGAP,which is responsible for Rho inactivation during differentiation,was not affected by PTPalpha ablation. In vivo studies revealed defective myelination in the PTPalpha(-/-) mouse brain. Together,our findings demonstrate that PTPalpha is a critical regulator of Fyn activation and of specific Fyn signaling events during differentiation,and is essential for promoting OPC differentiation and central nervous system myelination. View Publication -
Rowland TJ et al. (AUG 2010) Stem cells and development 19 8 1231--1240Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin.
Human induced pluripotent stem cells (iPSCs) hold promise as a source of adult-derived,patient-specific pluripotent cells for use in cell-based regenerative therapies. However,current methods of cell culture are tedious and expensive,and the mechanisms underlying cell proliferation are not understood. In this study,we investigated expression and function of iPSC integrin extracellular matrix receptors to better understand the molecular mechanisms of cell adhesion,survival,and proliferation. We show that iPSC lines generated using Oct-3/4,Sox-2,Nanog,and Lin-28 express a repertoire of integrins similar to that of hESCs,with prominent expression of subunits alpha5,alpha6,alphav,beta1,and beta5. Integrin function was investigated in iPSCs cultured without feeder layers on Matrigel or vitronectin,in comparison to human embryonic stem cells. beta1 integrins were required for adhesion and proliferation on Matrigel,as shown by immunological blockade experiments. On vitronectin,the integrin alphavbeta5 was required for initial attachment,but inhibition of both alphavbeta5 and beta1 was required to significantly decrease iPSC proliferation. Furthermore,iPSCs cultured on vitronectin for 9 passages retained normal karyotype,pluripotency marker expression,and capacity to differentiate in vitro. These studies suggest that vitronectin,or derivatives thereof,might substitute for Matrigel in a more defined system for iPSC culture. View Publication -
Carpentino JE et al. (OCT 2009) Cancer research 69 20 8208--15Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer.
Patients with chronic ulcerative colitis are at increased risk of developing colorectal cancer. Although current hypotheses suggest that sporadic colorectal cancer is due to inability to control cancer stem cells,the cancer stem cell hypothesis has not yet been validated in colitis-associated cancer. Furthermore,the identification of the colitis to cancer transition is challenging. We recently showed that epithelial cells with the increased expression of aldehyde dehydrogenase in sporadic colon cancer correlate closely with tumor-initiating ability. We sought to determine whether ALDH can be used as a marker to isolate tumor-initiating populations from patients with chronic ulcerative colitis. We used fluorescence-activated cell sorting to identify precursor colon cancer stem cells from colitis patients and report both their transition to cancerous stem cells in xenografting studies as well as their ability to generate spheres in vitro. Similar to sporadic colon cancer,these colitis-derived tumors were capable of propagation as sphere cultures. However,unlike the origins of sporadic colon cancer,the primary colitic tissues did not express any histologic evidence of dysplasia. To elucidate a potential mechanism for our findings,we compared the stroma of these different environments and determined that at least one paracrine factor is up-regulated in the inflammatory and malignant stroma compared with resting,normal stroma. These data link colitis and cancer identifying potential tumor-initiating cells from colitic patients,suggesting that sphere and/or xenograft formation will be useful to survey colitic patients at risk of developing cancer. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号