技术资料
-
Lehnertz B et al. (MAY 2010) The Journal of experimental medicine 207 5 915--22Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function.
Accumulating evidence suggests that the regulation of gene expression by histone lysine methylation is crucial for several biological processes. The histone lysine methyltransferase G9a is responsible for the majority of dimethylation of histone H3 at lysine 9 (H3K9me2) and is required for the efficient repression of developmentally regulated genes during embryonic stem cell differentiation. However,whether G9a plays a similar role in adult cells is still unclear. We identify a critical role for G9a in CD4(+) T helper (Th) cell differentiation and function. G9a-deficient Th cells are specifically impaired in their induction of Th2 lineage-specific cytokines IL-4,IL-5,and IL-13 and fail to protect against infection with the intestinal helminth Trichuris muris. Furthermore,G9a-deficient Th cells are characterised by the increased expression of IL-17A,which is associated with a loss of H3K9me2 at the Il17a locus. Collectively,our results establish unpredicted and complex roles for G9a in regulating gene expression during lineage commitment in adult CD4(+) T cells. View Publication -
Todaro M et al. (JUN 2010) Gastroenterology 138 6 2151--62Colon cancer stem cells: promise of targeted therapy.
First developed for hematologic disorders,the concept of cancer stem cells (CSCs) was expanded to solid tumors,including colorectal cancer (CRC). The traditional model of colon carcinogenesis includes several steps that occur via mutational activation of oncogenes and inactivation of tumor suppressor genes. Intestinal epithelial cells exist for a shorter amount of time than that required to accumulate tumor-inducing genetic changes,so researchers have investigated the concept that CRC arises from the long-lived stem cells,rather than from the differentiated epithelial cells. Colon CSCs were originally identified through the expression of the CD133 glycoprotein using an antibody directed to its epitope AC133. It is not clear if CD133 is a marker of colon CSCs-other cell surface markers,such as epithelial-specific antigen,CD44,CD166,Musashi-1,CD29,CD24,leucine-rich repeat-containing G-protein-coupled receptor 5,and aldehyde dehydrogenase 1,have been proposed. In addition to initiating and sustaining tumor growth,CSCs are believed to mediate cancer relapse after chemotherapy. How can we identify and analyze colon CSCs and what agents are being designed to kill this chemotherapy-refractory population? View Publication -
Gerges N et al. (JAN 2010) British medical bulletin 94 49--64New technologies for the detection of circulating tumour cells.
The vast majority of cancer-related death is due to the metastatic spread of the primary tumour. Circulating tumour cells (CTC) are essential for establishing metastasis and their detection has long been considered as a possible tool to assess the aggressiveness of a given tumour and its potential of subsequent growth at distant organs. Conventional markers are not reliable in detecting occult metastasis and,for example,fail to identify approximately 40% of cancer patients in need of more aggressive or better adjusted therapies. Recent studies in metastatic breast cancer have shown that CTC detection can be used as a marker for overall survival and assessment of the therapeutic response. The benefits of CTC detection in early breast cancer and other solid tumours need further validation. Moreover,optimal CTC detection techniques are the subject of controversy as several lack reproducibility,sensitivity and/or specificity. Recent technical advances allow CTC detection and characterization at the single-cell level in the blood or in the bone marrow. Their reproducibility propels the use of CTC in cancer staging and real-time monitoring of systemic anticancer therapies in several large clinical trials. CTC assays are being integrated in large clinical trials to establish their potential in the management of cancer patients and improve our understanding of metastasis biology. This review will focus on the techniques currently used,the technical advancements made,the limitations of CTC detection and future perspectives in this field. View Publication -
Pfaff JM et al. (JUL 2010) Journal of virology 84 13 6505--14HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells.
We previously reported on a panel of HIV-1 clade B envelope (Env) proteins isolated from a patient treated with the CCR5 antagonist aplaviroc (APL) that were drug resistant. These Envs used the APL-bound conformation of CCR5,were cross resistant to other small-molecule CCR5 antagonists,and were isolated from the patient's pretreatment viral quasispecies as well as after therapy. We analyzed viral and host determinants of resistance and their effects on viral tropism on primary CD4(+) T cells. The V3 loop contained residues essential for viral resistance to APL,while additional mutations in gp120 and gp41 modulated the magnitude of drug resistance. However,these mutations were context dependent,being unable to confer resistance when introduced into a heterologous virus. The resistant virus displayed altered binding between gp120 and CCR5 such that the virus became critically dependent on the N' terminus of CCR5 in the presence of APL. In addition,the drug-resistant Envs studied here utilized CCR5 very efficiently: robust virus infection occurred even when very low levels of CCR5 were expressed. However,recognition of drug-bound CCR5 was less efficient,resulting in a tropism shift toward effector memory cells upon infection of primary CD4(+) T cells in the presence of APL,with relative sparing of the central memory CD4(+) T cell subset. If such a tropism shift proves to be a common feature of CCR5-antagonist-resistant viruses,then continued use of CCR5 antagonists even in the face of virologic failure could provide a relative degree of protection to the T(CM) subset of CD4(+) T cells and result in improved T cell homeostasis and immune function. View Publication -
Suerth JD et al. (JUL 2010) Journal of virology 84 13 6626--35Self-inactivating alpharetroviral vectors with a split-packaging design.
Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences,highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date,alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells,the transfer of intact viral genomes is unacceptable for clinical applications,due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins,which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover,intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements,we were able to generate a self-inactivating (SIN) alpharetroviral vector,whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection. View Publication -
Xu Y et al. (MAY 2010) Proceedings of the National Academy of Sciences of the United States of America 107 18 8129--34Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules.
Using a high-throughput chemical screen,we identified two small molecules that enhance the survival of human embryonic stem cells (hESCs). By characterizing their mechanisms of action,we discovered an essential role of E-cadherin signaling for ESC survival. Specifically,we showed that the primary cause of hESC death following enzymatic dissociation comes from an irreparable disruption of E-cadherin signaling,which then leads to a fatal perturbation of integrin signaling. Furthermore,we found that stability of E-cadherin and the resulting survival of ESCs were controlled by specific growth factor signaling. Finally,we generated mESC-like hESCs by culturing them in mESC conditions. And these converted hESCs rely more on E-cadherin signaling and significantly less on integrin signaling. Our data suggest that differential usage of cell adhesion systems by ESCs to maintain self-renewal may explain their profound differences in terms of morphology,growth factor requirement,and sensitivity to enzymatic cell dissociation. View Publication -
Leonova KI et al. (APR 2010) Cell cycle (Georgetown,Tex.) 9 7 1434--43A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice.
It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could,in theory,contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work,we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice,PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition,we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly,however,PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus,although PFTb administration led to increased numbers of HSCs and HPCs,it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis. View Publication -
Kamei K-i et al. (MAY 2010) Lab on a chip 10 9 1113--9Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions.
Microfluidic image cytometry (MIC) has been developed to study phenotypes of various hPSC lines by screening several chemically defined serum/feeder-free conditions. A chemically defined hPSC culture was established using 20 ng mL(-1) of bFGF on 20 microg mL(-1) of Matrigel to grow hPSCs over a week in an undifferentiated state. Following hPSC culture,we conducted quantitative MIC to perform a single cell profiling of simultaneously detected protein expression (OCT4 and SSEA1). Using clustering analysis,we were able to systematically compare the characteristics of various hPSC lines in different conditions. View Publication -
Li Y et al. (MAY 2010) Clinical cancer research : an official journal of the American Association for Cancer Research 16 9 2580--90Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells.
PURPOSE: The existence of cancer stem cells (CSCs) in breast cancer has profound implications for cancer prevention. In this study,we evaluated sulforaphane,a natural compound derived from broccoli/broccoli sprouts,for its efficacy to inhibit breast CSCs and its potential mechanism. EXPERIMENTAL DESIGN: Aldefluor assay and mammosphere formation assay were used to evaluate the effect of sulforaphane on breast CSCs in vitro. A nonobese diabetic/severe combined immunodeficient xenograft model was used to determine whether sulforaphane could target breast CSCs in vivo,as assessed by Aldefluor assay,and tumor growth upon cell reimplantation in secondary mice. The potential mechanism was investigated using Western blotting analysis and beta-catenin reporter assay. RESULTS: Sulforaphane (1-5 micromol/L) decreased aldehyde dehydrogenase-positive cell population by 65% to 80% in human breast cancer cells (P textless 0.01) and reduced the size and number of primary mammospheres by 8- to 125-fold and 45% to 75% (P textless 0.01),respectively. Daily injection with 50 mg/kg sulforaphane for 2 weeks reduced aldehyde dehydrogenase-positive cells by textgreater50% in nonobese diabetic/severe combined immunodeficient xenograft tumors (P = 0.003). Sulforaphane eliminated breast CSCs in vivo,thereby abrogating tumor growth after the reimplantation of primary tumor cells into the secondary mice (P textless 0.01). Western blotting analysis and beta-catenin reporter assay showed that sulforaphane downregulated the Wnt/beta-catenin self-renewal pathway. CONCLUSIONS: Sulforaphane inhibits breast CSCs and downregulates the Wnt/beta-catenin self-renewal pathway. These findings support the use of sulforaphane for the chemoprevention of breast cancer stem cells and warrant further clinical evaluation. View Publication -
Nagai K-i et al. (APR 2010) Biochemical and biophysical research communications 395 2 258--263Long-term culture following ES-like gene-induced reprogramming elicits an aggressive phenotype in mutated cholangiocellular carcinoma cells.
BACKGROUND: We recently reported that gastrointestinal (GI) cancer cells can be reprogrammed to a pluripotent state by the ectopic expression of defined embryonic stem (ES)-like transcriptional factors. The induced pluripotent cancer (iPC) cells from GI cancer were sensitized to chemotherapeutic agents and differentiation-inducing treatment during a short-term culture,although a phenotype induced by long-term culture needs to be studied. METHODS: A long-term cultured (Lc)-iPC cells were produced in GI cancer cell lines by virus-mediated introduction of four ES-like genes-c-MYC,SOX2,OCT3/4,and KLF4-followed by a culture more than three months after iPC cells induction. An acquired state was studied by expression of immature-related surface antigens,Tra-1-60,Tra-1-81,Tra-2-49,and Ssea-4; and epigenetic trimethyl modification at lysine 4 of histone H3. Sensitivity to chemotherapeutic agents and tumorigenicity were studied in Lc-iPC cells. RESULTS: Whereas the introduction of defined factors of iPC cells once induced an immature state and sensitized cells to therapeutic reagents,the endogenous expression of the ES-like genes except for activated endogenous c-MYC was down-regulated in a long-term culture,suggesting a high magnitude of the reprogramming induction by defined factors and the requirement of therapeutic maintenance in Lc-iPC cells from cholangiocellular carcinoma HuCC-T1 cells,which harbor TP53(R175H) and KRAS(G12D). The Lc-iPC cells showed resistance to 5-fluorouracil in culture,and high tumorigenic ability with activated endogenous c-MYC in immunodeficient mice. CONCLUSION: The Lc-iPC cells from HuCC-T1 might be prone to an undesirable therapeutic response because of an association with the activated endogenous c-MYC. To consider the possible therapeutic approach in GI cancer,it would be necessary to develop a predictive method for evaluating the improper reprogramming-associated aggressive phenotype of iPC cells. View Publication -
Chen X et al. (NOV 2010) Stem cells and development 19 11 1781--1792Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media.
Metabolic studies of human embryonic stem cells (hESCs) can provide important information for stem cell bioprocessing. To this end,we have examined growth and metabolism of hESCs in both traditional 2-dimensional (2D) colony cultures and 3-dimensional microcarrier cultures using a conditioned medium and 3 serum-free media. The 2D colony cultures plateaued at cell densities of 1.1-1.5 × 10? cells/mL at day 6 due to surface limitation. Microcarrier cultures achieved 1.5-2 × 10? cells/mL on days 8-10 before reaching a plateau; this growth arrest was not due to surface limitation,but probably due to metabolic limitations. Metabolic analysis of the cultures showed that amino acids (including glutamine) and glucose are in excess and are not limiting cell growth; on the other hand,the high levels of waste products (25 mM lactate and 0.8 mM ammonium) and low pH (6.6) obtained at the last stages of cell propagation could be the causes for growth arrest. hESCs cultured in media supplemented with lactate (up to 28 mM) showed reduced cell growth,whereas ammonium (up to 5 mM) had no effect. Lactate and,to a lesser extent,ammonia affected pluripotency as reflected by the decreasing population of cells expressing pluripotent marker TRA-1-60. Feeding hESC cultures with low concentrations of glucose resulted in lower lactate levels (∼10%) and a higher pH level of 6.7,which leads to a 40% increase in cell density. We conclude that the high lactate levels and the low pH during the last stages of high-density hESC culture may limit cell growth and affect pluripotency. To overcome this limitation,a controlled feed of low levels of glucose and online control of pH can be used. View Publication -
van den Akker E et al. (SEP 2010) Haematologica 95 9 1594--8The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples.
The study of human erythropoiesis in health and disease requires a robust culture system that consistently and reliably generates large numbers of immature erythroblasts that can be induced to differentiate synchronously. We describe a culture method modified from Leberbauer et al. (2005) and obtain a homogenous population of erythroblasts from peripheral blood mononuclear cells (PBMC) without prior purification of CD34(+) cells. This pure population of immature erythroblasts can be expanded to obtain 4x10(8) erythroblasts from 1x10(8) PBMC after 13-14 days in culture. Upon synchronized differentiation,high levels of enucleation (80-90%) and low levels of cell death (textless10%) are achieved. We compared the yield of erythroblasts obtained from PBMC,CD34(+) cells or PBMC depleted of CD34(+) cells and show that CD34(-) cells represent the most significant early erythroid progenitor population. This culture system may be particularly useful for investigating the pathophysiology of anemic patients where only small blood volumes are available. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号