技术资料
-
A. Wu et al. (Jul 2025) International Journal of Molecular Sciences 26 13Identification of a PAK6-Mediated MDM2/p21 Axis That Modulates Survival and Cell Cycle Control of Drug-Resistant Stem/Progenitor Cells in Chronic Myeloid Leukemia
Chronic myeloid leukemia (CML) is a leading example of a malignancy where a molecular targeted therapy revolutionized treatment but has rarely led to cures. Overcoming tyrosine kinase inhibitor (TKI) drug resistance remains a challenge in the treatment of CML. We have recently identified miR-185 as a predictive biomarker where reduced expression in CD34 + treatment-naïve CML cells was associated with TKI resistance. We have also identified PAK6 as a target gene of miR-185 that was upregulated in CD34 + TKI-nonresponder cells. However,its role in regulating TKI resistance remains largely unknown. In this study,we specifically targeted PAK6 in imatinib (IM)-resistant cells and CD34 + stem/progenitor cells from IM-nonresponders using a lentiviral-mediated PAK6 knockdown strategy. Interestingly,the genetic and pharmacological suppression of PAK6 significantly reduced proliferation and increased apoptosis in TKI-resistant cells. Cell survivability was further diminished when IM was combined with PAK6 knockdown. Importantly,PAK6 inhibition in TKI-resistant cells induced cell cycle arrest in the G2-M phase and cellular senescence,accompanied by increased levels of DNA damage-associated senescence markers. Mechanically,we identified a PAK6-mediated MDM2-p21 axis that regulates cell cycle arrest and senescence. Thus,PAK6 plays a critical role in determining alternative cell fates in leukemic cells,and targeting PAK6 may offer a therapeutic strategy to selectively eradicate TKI-resistant cells. View Publication -
T. J. Gough et al. (Jun 2025) Animals : an Open Access Journal from MDPI 15 13Chicken Primordial Germ Cell Surface Marker
This study focuses on improving the identification of chicken primordial germ cells (PGCs),which are vital for genetic transmission and biotechnological applications. Traditional markers like SSEA1 and CVH have limitations—SSEA1 lacks specificity,and CVH is intracellular. A monoclonal antibody was generated by injecting chicken PGCs into mice,producing one that specifically binds to PGCs and decreases with cell differentiation. Mass spectrometry identified its target as the MYH9 protein. The resulting αMYH9 antibody effectively labels PGCs at various developmental stages,offering a valuable tool for isolating viable PGCs and advancing avian genetics,agriculture,and biotechnology. View Publication -
A. D. D. Lima et al. (Jun 2025) Cells 14 13Regulatory T Cells Boost Efficacy of Post-Infarction Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cell Transplants
Cell therapy is promising for heart failure treatment,with growing interest in cardiovascular progenitor cells (CPCs) from pluripotent stem cells. A major challenge is managing the immune response,due to their allogeneic source. Regulatory T cells (Treg) offer an alternative to pharmacological immunosuppression by inducing immune tolerance. This study assesses whether Treg therapy can mitigate the xeno-immune response,improving cardiac outcomes in a mouse model of human CPC intramyocardial transplantation. CPCs stimulated immune responses in allogeneic and xenogeneic settings,causing proliferation in T cell subsets. Tregs showed immunosuppressive effects on T lymphocyte populations when co-cultured with CPCs. Post infarction,CPCs were transplanted intramyocardially into an immune-competent mouse model 3 weeks after myocardial infarction. Human or murine Tregs were intravenously administered on transplantation day and three days later. Control groups received CPCs without Tregs or saline (PBS). CPCs with Tregs improved LV systolic function in three weeks,linked to reduced myocardial fibrosis and enhanced angiogenesis. This was accompanied by decreased splenocyte NK cell populations and pro-inflammatory cytokine levels in cardiac tissue. Treg therapy with CPC transplantation enhances cardiac functional and structural outcomes in mice. Though it does not directly avert graft rejection,it primarily affects NKG2D+ cytotoxic cells,indicating systemic immune modulation and remote heart repair benefits. View Publication -
M. Karim et al. (Jul 2025) Nature Communications 16PIP4K2C inhibition reverses autophagic flux impairment induced by SARS-CoV-2
In search for broad-spectrum antivirals,we discover a small molecule inhibitor,RMC-113,that potently suppresses the replication of multiple RNA viruses including SARS-CoV-2 in human lung organoids. We demonstrate selective inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target engagement by its clickable analog. Lipidomics analysis reveals alteration of SARS-CoV-2-induced phosphoinositide signature by RMC-113 and links its antiviral effect with functional PIP4K2C and PIKfyve inhibition. We identify PIP4K2C’s roles in SARS-CoV-2 entry,RNA replication,and assembly/egress,validating it as a druggable antiviral target. Integrating proteomics,single-cell transcriptomics,and functional assays,reveals that PIP4K2C binds SARS-CoV-2 nonstructural protein 6 and regulates virus-induced autophagic flux impairment. Promoting viral protein degradation by reversing autophagic flux impairment is a mechanism of antiviral action of RMC-113. These findings reveal virus-induced autophagy regulation via PIP4K2C,an understudied kinase,and propose dual PIP4K2C and PIKfyve inhibition as a candidate strategy to combat emerging viruses. Subject terms: SARS-CoV-2,Target identification,Autophagy View Publication -
N. Daskoulidou et al. (Jul 2025) Alzheimer's & Dementia 21 7The Alzheimer's disease‐associated complement receptor 1 variant confers risk by impacting glial phagocytosis
Genome‐wide association studies have implicated complement in Alzheimer's disease (AD). The CR1*2 variant of complement receptor 1 (CR1; CD35),confers increased AD risk. We confirmed CR1 expression on glial cells; however,how CR1 variants influence AD risk remains unclear. Induced pluripotent stem cell‐derived microglia and astrocytes were generated from donors homozygous for the common CR1 variants (CR1*1/CR1*1;CR1*2/CR1*2). CR1 expression was quantified and phagocytic activity assessed using diverse targets ( Escherichia coli bioparticles,amyloid β aggregates,and synaptoneurosomes),with or without serum opsonization. Expression of CR1*1 was significantly higher than CR1*2 on glial lines. Phagocytosis for all targets was markedly enhanced following serum opsonization,attenuated by Factor I‐depletion,demonstrating CR1 requirement for C3b processing. CR1*2‐expressing glia showed significantly enhanced phagocytosis of all opsonized targets compared to CR1*1‐expressing cells. CR1 is critical for glial phagocytosis of opsonized targets. CR1*2,despite lower expression,enhances glial phagocytosis,providing mechanistic explanation of increased AD risk. Induced pluripotent stem cell (iPSC)‐derived glia from individuals expressing the Alzheimer's disease (AD) risk variant complement receptor (CR) 1*2 exhibit lower CR1 expression compared to those from donors expressing the non‐risk form CR1*1. The iPSC‐derived glia from individuals expressing the AD risk variant CR1*2 exhibit enhanced phagocytic activity for opsonized bacterial particles,amyloid‐β aggregates and human synaptoneurosomes compared to those from donors expressing the non‐risk form CR1*1. We suggest that expression of the CR1*2 variant confers risk of AD by enhancing the phagocytic capacity of glia for opsonized targets. View Publication -
E. Keltsch et al. (Jul 2025) Immunity & Ageing : I & A 22 6Aging modulates the immunosuppressive, polarizing and metabolic functions of blood-derived myeloid-derived suppressor cells (MDSCs)
Immunosenescence describes the gradual remodeling of immune responses,leading to disturbed immune homeostasis and increased susceptibility of older adults for infections,neoplasia and autoimmunity. Decline in cellular immunity is associated with intrinsic changes in the T cell compartment,but can be further pushed by age-related changes in cells regulating T cell immunity. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of T cell activation and function,whose induction requires chronic inflammation. Since aging is associated with low grade inflammation (inflammaging) and increased myelopoiesis,age-induced changes in MDSC induction and function in relation to T cell immunity were analyzed. MDSC numbers and functions were compared between “healthy” young and old adults,who were negatively diagnosed for severe acute and chronic diseases known to induce MDSC accumulation. MDSCs were either isolated from peripheral blood or generated in vitro from blood-derived CD14 cells. Aging was associated with significantly increased MDSC numbers in the monocytic- (M-) and polymorphonuclear (PMN-) MDSC subpopulations. MDSCs could be induced more efficiently from CD14 cells of old donors and these MDSCs inhibited CD3/28-induced T cell proliferation significantly better than MDSCs induced from young donors. Serum factors of old donors supported MDSC induction comparable to serum factors from young donors,but increased immunosuppressive activity of MDSCs was only achieved by serum from old donors. Elevated immunosuppressive activity of MDSCs from old donors was associated with major metabolic changes and increased intracellular levels of neutral and oxidized lipids known to promote immunosuppressive functions. Independent of age,MDSC-mediated suppression of T cell proliferation required direct MDSC– T cell contact. Besides their increased ability to inhibit activation-induced T cell proliferation,MDSCs from old donors strongly shift the immune response towards Th2 immunity and might thereby further contribute to impaired cell-mediated immunity during aging. These results indicate that immunosenescence of innate immunity comprises accumulation and functional changes in the MDSC compartment,which directly impacts T cell functions and contribute to age-associated impaired T cell immunity. Targeting MDSCs during aging might help to maintain functional T cell responses and increase the chance of healthy aging. The online version contains supplementary material available at 10.1186/s12979-025-00524-w. View Publication -
S. Okabe et al. (Jul 2025) Discover Oncology 16 Suppl 1Targeting WEE1 and asciminib suppresses ABL-tyrosine kinase inhibitor-resistant chronic myeloid leukemia cells
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the uncontrolled proliferation of white blood cells. Tyrosine kinase inhibitors (TKIs) are the standard treatment; however,resistance to BCR::ABL1 mutations remains challenging. WEE1,a checkpoint kinase involved in mitosis and DNA repair,is a potential therapeutic target for CML treatment. Ponatinib-resistant CML cells were screened to identify candidates for overcoming drug resistance. The efficacy of the ABL TKI asciminib and the WEE1 inhibitor MK-1775 was evaluated using proliferation and colony formation assays. Public database analysis ( GSE100026 ) assessed WEE1/PKMYT1 expression in CML. In vitro screening identified MK-1775 as a promising therapeutic candidate. WEE1/PKMYT1 expression was elevated in CML cells compared to healthy cells. Both asciminib and MK-1775 inhibited CML cell proliferation after 72 h,with enhanced cytotoxicity when combined. Co-treatment reduced colony formation and induced G2/M arrest,whereas an increase in the sub-G1 cell population indicated apoptosis. Furthermore,the combination treatment disrupted the mitochondrial membrane potential. The combination of asciminib and WEE1 inhibition demonstrated greater efficacy than either drug alone,suggesting a novel therapeutic strategy for treating CML. These findings provide insights into overcoming TKI resistance and highlight a promising approach for future clinical applications. The online version contains supplementary material available at 10.1007/s12672-025-03036-7. View Publication -
V. Ramar et al. (Jul 2025) Cell Communication and Signaling : CCS 23TRIM21 functions as an oncogene in glioblastoma by transactivating FOSL1 and promoting the ubiquitination of p27
Our previous studies demonstrated that FOSL1 promotes glioblastoma (GBM) progression and stemness through pathways such as STAT3 and NF-κB signaling. Recently,we identified that FOSL1 physically interacts with the nuclear E3 ligase TRIM21. This study investigates the role of TRIM21 in GBM,including its interaction with FOSL1,its regulation of FOSL1 transactivation,and its ubiquitination-mediated degradation of tumor suppressor p27. Immunoprecipitation assays were used to evaluate the interactions between TRIM21,FOSL1,and p27. TRIM21 expression was manipulated through overexpression and siRNA-mediated knockdown to assess its effects on p27 levels and ubiquitination. TCGA and CGGA datasets were analyzed to explore correlations between TRIM21 expression,glioma subtypes,and patient survival. Glioma cell proliferation (MTT and colony formation) and invasion (transwell assays) were evaluated following TRIM21 manipulation. Immunohistochemistry on glioma patient tissue microarray (TMA) assessed TRIM21 expression and its association with FOSL1,IDH status,and glioma grade. The role of nuclear TRIM21 in FOSL1 promoter transactivation was analyzed via AP-1 binding sites. TCGA and CGGA revealed that TRIM21 is highly expressed in GBM,particularly in the mesenchymal subtypes,and correlates with poor survival outcomes. Functional assays demonstrated that TRIM21 enhances glioma cell proliferation and invasion. Immunohistochemistry confirmed elevated TRIM21 levels in gliomas,positively correlating with FOSL1 expression and glioma grade,and inversely correlating with IDH1 wild-type status. Mechanistically,TRIM21 physically interacts with FOSL1 and p27,driving tumorigenesis by transactivating FOSL1 via AP-1 binding sites and promoting p27 ubiquitination and degradation. These functions are mediated through TRIM21’s RING domain for p27 degradation and its PRYSPRY domain for FOSL1 regulation. TRIM21 functions as an oncogene in GBM by degrading the tumor suppressor p27 and promoting FOSL1 transactivation. These findings highlight TRIM21 as a promising therapeutic target in GBM. The online version contains supplementary material available at 10.1186/s12964-025-02325-6. View Publication -
F. Huang et al. (Jul 2025) Journal of Nanobiotechnology 23Early-life exposure to polypropylene nanoplastics induces neurodevelopmental toxicity in mice and human iPSC-derived cerebral organoids
Nanoplastics (NPs) are emerging environmental pollutants that pose growing concerns due to their potential health risks. However,the effects of inhaled NP exposure during pregnancy on fetal brain development remain poorly understood. In this study,we investigated the impact of maternal exposure to polypropylene nanoplastics (PP-NPs) on fetal brain development and neurobehavioral outcomes in a mouse model and further explored its mechanism in human cerebral organoids. Maternal exposure to PP-NPs significantly impaired neuronal differentiation and proliferation in the fetal cortex. Neurobehavioral assessments revealed significant deficits in offspring following maternal exposure,including impaired spatial memory,reduced motor coordination,and heightened anxiety-like behavior. Furthermore,human brain organoids exposed to PP-NPs exhibited reduced growth and neuronal differentiation,with significant downregulation of key neuronal markers such as TUJ1,MAP2,and PAX6. Transcriptomic analysis identified alterations in gene expression,particularly in neuroactive ligand-receptor interaction pathway. Molecular docking and fluorescence co-localization analysis further suggested CYSLTR1 and PTH1R as key molecular targets of PP-NPs. These findings provide novel insights into the toxicological effects of NPs on the developing brain and emphasize the need for preventive measures to protect fetal neurodevelopment during pregnancy. The online version contains supplementary material available at 10.1186/s12951-025-03561-1. View Publication -
T. Mukhtar et al. (Jul 2025) Nature Communications 16α7 nicotinic acetylcholine receptors regulate radial glia fate in the developing human cortex
Prenatal nicotine exposure impairs fetal cortical grey matter volume,but the precise cellular mechanisms remain poorly understood. This study elucidates the role of nicotinic acetylcholine receptors (nAChRs) in progenitor cells and radial glia (RG) during human cortical development. We identify two nAChR subunits—CHRNA7 and the human-specific CHRFAM7A—expressed in SOX2+ progenitors and neurons,with CHRFAM7A particularly enriched along RG endfeet. nAChR activation in organotypic slices and dissociated cultures increases RG proliferation while decreasing neuronal differentiation,whereas nAChR knockdown reduces RG and increases neurons. Single-cell RNA sequencing reveals that nicotine exposure downregulates key genes in excitatory neurons (ENs),with CHRNA7 or CHRFAM7A selectively modulating these changes,suggesting an evolutionary divergence in regulatory pathways. Furthermore,we identify YAP1 as a critical downstream effector of nAChR signaling,and inhibiting YAP1 reverses nicotine-induced phenotypic alterations in oRG cells,highlighting its role in nicotine-induced neurodevelopmental pathophysiology. Subject terms: Neuronal development,Developmental neurogenesis,Neural stem cells View Publication -
M. R. Lidonnici et al. (Jul 2025) Nature Communications 16Imbalanced TGFβ signalling and autophagy drive erythroid priming of hematopoietic stem cells in β-thalassemia
The hematopoietic stem cell and multipotent progenitor (HSC/MPP) pool dynamically responds to stress to adapt blood output to specific physiological demands. In β-thalassemia (Bthal),severe anemia and ineffective erythropoiesis generate expansion of erythroid precursors and a chronic stress status in the bone marrow (BM) microenvironment. However,the response to the BM altered status at the level of the HSC/MPP compartment in terms of lineage commitment has not been investigated. Bulk and single-cell RNA-sequencing reveal that Bthal HSCs/MPPs are expanded and activated with enhanced priming along the whole Ery differentiation trajectory. Consistently,HSC/MPP showed an altered TGFβ expression and autophagy transcriptional signatures along with a declined dormancy state. We discovered that the altered TGFβ signaling fosters the Ery potential of HSCs by reducing their autophagic levels,and in vivo stimulation of autophagy is sufficient to rescue the imbalance of the HSC compartment. Our findings identify the interplay between TGFβ and HSC autophagy as a key driver in the context of non-malignant hematopoiesis. Subject terms: Haematopoietic stem cells,Haematological diseases,Autophagy View Publication -
Zhang et al. (Jun 2025) Experimental & Molecular Medicine 57 6TGF-β inhibition restores hematopoiesis and immune balance via bone marrow EPCs in aplastic anemia
Aplastic anemia (AA) is a life-threatening bone marrow (BM) failure syndrome characterized by pancytopenia. Recent studies revealed that dysfunctional endothelial progenitor cells (EPCs),critical components of the BM microenvironment,are involved in hematopoietic-dysfunction-related diseases,including AA. However,the mechanism underlying EPC damage in AA remains unknown. Here we find that transforming growth factor-β (TGF-β) signaling is hyperactive in dysfunctional AA EPCs with impaired hematopoietic support and immune regulatory ability,and TGF-β inhibition promotes hematopoiesis and immune rebalance by repairing dysfunctional EPCs. Through impaired EPC and AA murine models,we validated that TGF-β inhibition restores EPC dysfunction to improve hematopoiesis and immune status in vitro and in vivo. RNA sequencing and real-time quantitative polymerase chain reaction provided further validation. These results indicate that dysfunctional BM EPCs with hyperactive TGF-β signaling are involved in AA. TGF-β inhibition promotes multilineage hematopoiesis recovery and immune balance by repairing dysfunctional EPCs,providing a potential therapeutic strategy for AA. Subject terms: Experimental models of disease,Translational research View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 59 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1032 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2916 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 206 项目
- 癌症 7 项目
- 神经科学 663 项目
- 移植研究 106 项目
- 类器官 155 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 74 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 63 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 894 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 153 项目
- MethoCult 509 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 251 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 236 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 452 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 103 项目
- 先天性淋巴细胞 40 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 20 项目
- 单个核细胞 92 项目
- 单核细胞 191 项目
- 多能干细胞 1985 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 471 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 983 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 204 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 107 项目
- CD8+T细胞 88 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 115 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 191 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号