Dumitru R et al. (JUN 2012)
Molecular cell 46 5 573--583
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis.
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax,which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly,active Bax was maintained at the Golgi rather than at the mitochondria,thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage,active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly,upon differentiation,Bax was no longer active,and cells were not acutely sensitive to DNA damage. Thus,maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death,likely to prevent the propagation of mutations during the early critical stages of embryonic development.
View Publication
Baudet A et al. (JUN 2012)
Blood 119 26 6255--8
RNAi screen identifies MAPK14 as a druggable suppressor of human hematopoietic stem cell expansion.
We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells,using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.
View Publication
Torrez LB et al. (JAN 2012)
Stem Cells International 2012 417865
Derivation of neural progenitors and retinal pigment epithelium from common marmoset and human pluripotent stem cells
Embryonic and induced pluripotent stem cells (IPSCs) derived from mammalian species are valuable tools for modeling human disease,including retinal degenerative eye diseases that result in visual loss. Restoration of vision has focused on transplantation of neural progenitor cells (NPCs) and retinal pigmented epithelium (RPE) to the retina. Here we used transgenic common marmoset (Callithrix jacchus) and human pluripotent stem cells carrying the enhanced green fluorescent protein (eGFP) reporter as a model system for retinal differentiation. Using suspension and subsequent adherent differentiation cultures,we observed spontaneous in vitro differentiation that included NPCs and cells with pigment granules characteristic of differentiated RPE. Retinal cells derived from human and common marmoset pluripotent stem cells provide potentially unlimited cell sources for testing safety and immune compatibility following autologous or allogeneic transplantation using nonhuman primates in early translational applications.
View Publication
Carlson AL et al. (AUG 2012)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26 8 3240--51
Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.
Substrates used to culture human embryonic stem cells (hESCs) are typically 2-dimensional (2-D) in nature,with limited ability to recapitulate in vivo-like 3-dimensional (3-D) microenvironments. We examined critical determinants of hESC self-renewal in poly-d-lysine-pretreated synthetic polymer-based substrates with variable microgeometries,including planar 2-D films,macroporous 3-D sponges,and microfibrous 3-D fiber mats. Completely synthetic 2-D substrates and 3-D macroporous scaffolds failed to retain hESCs or support self-renewal or differentiation. However,synthetic microfibrous geometries made from electrospun polymer fibers were found to promote cell adhesion,viability,proliferation,self-renewal,and directed differentiation of hESCs in the absence of any exogenous matrix proteins. Mechanistic studies of hESC adhesion within microfibrous scaffolds indicated that enhanced cell confinement in such geometries increased cell-cell contacts and altered colony organization. Moreover,the microfibrous scaffolds also induced hESCs to deposit and organize extracellular matrix proteins like laminin such that the distribution of laminin was more closely associated with the cells than the Matrigel treatment,where the laminin remained associated with the coated fibers. The production of and binding to laminin was critical for formation of viable hESC colonies on synthetic fibrous scaffolds. Thus,synthetic substrates with specific 3-D microgeometries can support hESC colony formation,self-renewal,and directed differentiation to multiple lineages while obviating the stringent needs for complex,exogenous matrices. Similar scaffolds could serve as tools for developmental biology studies in 3-D and for stem cell differentiation in situ and transplantation using defined humanized conditions.
View Publication
Petrik D et al. ( 2012)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 26 8 3148--3162
Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule.
Adult neurogenesis occurs throughout life in the mammalian hippocampus and is essential for memory and mood control. There is significant interest in identifying ways to promote neurogenesis and ensure maintenance of these hippocampal functions. Previous work with a synthetic small molecule,isoxazole 9 (Isx-9),highlighted its neuronal-differentiating properties in vitro. However,the ability of Isx-9 to drive neurogenesis in vivo or improve hippocampal function was unknown. Here we show that Isx-9 promotes neurogenesis in vivo,enhancing the proliferation and differentiation of hippocampal subgranular zone (SGZ) neuroblasts,and the dendritic arborization of adult-generated dentate gyrus neurons. Isx-9 also improves hippocampal function,enhancing memory in the Morris water maze. Notably,Isx-9 enhances neurogenesis and memory without detectable increases in cellular or animal activity or vascularization. Molecular exploration of Isx-9-induced regulation of neurogenesis (via FACS and microarray of SGZ stem and progenitor cells) suggested the involvement of the myocyte-enhancer family of proteins (Mef2). Indeed,transgenic-mediated inducible knockout of all brain-enriched Mef2 isoforms (Mef2a/c/d) specifically from neural stem cells and their progeny confirmed Mef2's requirement for Isx-9-induced increase in hippocampal neurogenesis. Thus,Isx-9 enhances hippocampal neurogenesis and memory in vivo,and its effects are reliant on Mef2,revealing a novel cell-intrinsic molecular pathway regulating adult neurogenesis.
View Publication
Hagness M et al. ( 2012)
The Journal of Immunology 188 11 5459--66
Kinetics and activation requirements of contact-dependent immune suppression by human regulatory T cells
Naturally occurring regulatory T cells (Tregs) maintain self tolerance by dominant suppression of potentially self-reactive T cells in peripheral tissues. However,the activation requirements,the temporal aspects of the suppressive activity,and mode of action of human Tregs are subjects of controversy. In this study,we show that Tregs display significant variability in the suppressive activity ex vivo as 54% of healthy blood donors examined had fully suppressive Tregs spontaneously,whereas in the remaining donors,anti-CD3/CD2/CD28 stimulation was required for Treg suppressive activity. Furthermore,anti-CD3/CD2/CD28 stimulation for 6 h and subsequent fixation in paraformaldehyde rendered the Tregs fully suppressive in all donors. The fixation-resistant suppressive activity of Tregs operated in a contact-dependent manner that was not dependent on APCs,but could be fully obliterated by trypsin treatment,indicating that a cell surface protein is directly involved. By add-back of active,fixed Tregs at different time points after activation of responding T cells,the responder cells were susceptible to Treg-mediated immune suppression up to 24 h after stimulation. This defines a time window in which effector T cells are susceptible to Treg-mediated immune suppression. Lastly,we examined the effect of a set of signaling inhibitors that perturb effector T cell activation and found that none of the examined inhibitors affected Treg activation,indicating pathway redundancy or that Treg activation proceeds by signaling mechanisms distinct from those of effector T cells.
View Publication
Lo SL et al. (MAY 2012)
Biochemical and biophysical research communications 421 3 616--620
A ??-sheet structure interacting peptide for intracellular protein delivery into human pluripotent stem cells and their derivatives
The advance in stem cell research relies largely on the efficiency and biocompatibility of technologies used to manipulate stem cells. In our previous study,we had designed an amphipathic peptide RV24 that can deliver proteins into cancer cell lines efficiently without significant side effects. Encouraged by this observation,we moved forward to test whether RV24 could be used to deliver proteins into human embryonic stem cells and human induced pluripotent stem cells. RV24 successfully mediated protein delivery into these pluripotent stem cells,as well as their derivatives including neural stem cells and dendritic cells. Based on NMR studies and particle surface charge measurements,we proposed that hydrophobic domain of RV24 interacts with ??-sheet structures of the proteins,followed by formation of peptide cage" to facilitate delivery across cellular membrane. These findings suggest the feasibility of using amphipathic peptide to deliver functional proteins intracellularly for stem cell research. ?? 2012 Elsevier Inc."
View Publication
tze Wu D et al. (APR 2012)
PLoS ONE 7 4 e34778
Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular,in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers,a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts,allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells,but that specific genes,including positive and negative selection markers,regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.
View Publication
Neff AT et al. (AUG 2012)
Genome research 22 8 1457--67
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells
Pluripotency is a unique state in which cells can self-renew indefinitely but also retain the ability to differentiate into other cell types upon receipt of extracellular cues. Although it is clear that stem cells have a distinct transcriptional program,little is known about how alterations in post-transcriptional mechanisms,such as mRNA turnover,contribute to the achievement and maintenance of pluripotency. Here we have assessed the rates of decay for the majority of mRNAs expressed in induced pluripotent stem (iPS) cells and the fully differentiated human foreskin fibroblasts (HFFs) they were derived from. Comparison of decay rates in the two cell types led to the discovery of three independent regulatory mechanisms that allow coordinated turnover of specific groups of mRNAs. One mechanism results in increased stability of many histone mRNAs in iPS cells. A second pathway stabilizes a large set of zinc finger protein mRNAs,potentially through reduced levels of miRNAs that target them. Finally,a group of transcripts bearing 3' UTR C-rich sequence elements,many of which encode transcription factors,are significantly less stable in iPS cells. Intriguingly,two poly(C)-binding proteins that recognize this type of element are reciprocally expressed in iPS and HFF cells. Overall,our results highlight the importance of post-transcriptional control in pluripotent cells and identify miRNAs and RNA-binding proteins whose activity may coordinately control expression of a wide range of genes in iPS cells.
View Publication
Lie K-HH et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 237--246
Derivation, propagation, and characterization of neuroprogenitors from pluripotent stem cells (hESCs and hiPSCs).
The differentiation of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) towards functional neurons particularly hold great potential for the cell-based replacement therapy in neurodegenerative diseases. Here,we describe a stepwise differentiation protocol that mimics the early stage of neural development in human to promote the generation of neuroprogenitors at a high yield. Both the hESCs and hiPSCs are initially cultured in an optimized feeder-free condition,which offer an efficient formation of aggregates. To specify the neuroectodermal specification,these aggregates are differentiated in a defined neural induction medium to develop into neural rosettes-like structures. The rosettes are expanded into free-floating sphere and can be further propagated or developed into variety of neuronal subtypes.
View Publication
Krawetz R and Rancourt DE (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 227--235
Suspension bioreactor expansion of undifferentiated human embryonic stem cells
Embryonic stem cells (ESCs) are unique cells,which have the ability to differentiate into all cell types that comprise the adult organism. Furthermore,ESCs can infinitely self-renew under optimized conditions. These features place human ESCs (hESCs) in a position where these cells can be exploited for tissue engineering and regenerative medicine approaches in treating human degenerative disorders. However,cell therapy approaches will require large amounts of clinically useable cells,not typically achievable using standard static cell culture methods. Here,we describe a method wherein clinically relevant numbers of hESCs can be generated in a cost and time effective manner.
View Publication
Mateizel I et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 81--112
Establishment of hESC lines from the inner cell mass of blastocyst-stage embryos and single blastomeres of 4-cell stage embryos.
More than 600 human embryonic stem cell (hESC) lines have been reported today at the human European Embryonic Stem Cell Registry ( http://www.hescreg.eu/ ). Despite these high numbers,there are currently no general protocols for derivation,culture,and characterization of hESC. Moreover,data on the culture of the embryo used for the derivation (medium,day of ICM isolation) are usually not available but can have an impact on the derivation rate. We present here the protocols for derivation,culture and characterization as we applied them for the 22 hESC lines (named VUB-hESC) in our laboratory.
View Publication