技术资料
-
Hassiotou F et al. (OCT 2012) Stem cells (Dayton,Ohio) 30 10 2164--2174Breastmilk is a novel source of stem cells with multilineage differentiation potential.
The mammary gland undergoes significant remodeling during pregnancy and lactation,which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here,we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4,SOX2,NANOG,known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts,a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium,they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore,hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer,with potential use in bioengineering and tissue regeneration. View Publication -
Mizuno S et al. ( 2012) American journal of respiratory cell and molecular biology 47 5 679--687Severe pulmonary arterial hypertension induced by SU5416 and ovalbumin immunization.
The combination of chronic hypoxia and treatment of rats with the vascular endothelial growth factor (VEGF) receptor blocker,SU5416,induces pulmonary angio-obliteration,resulting in severe pulmonary arterial hypertension (PAH). Inflammation is thought to contribute to the pathology of PAH. Allergic inflammation caused by ovalbumin (OVA) immunization causes muscularization of pulmonary arteries,but not severe PAH. Whether disturbance of the immune system and allergic inflammation in the setting of lung endothelial cell apoptosis causes PAH is unknown. We investigated the effects of OVA-allergic inflammation on the development of PAH initiated by VEGF blockade-induced lung endothelial cell apoptosis. OVA-immunized rats were treated with SU5416 to induce pulmonary vascular endothelial cell apoptosis. The combination of OVA and SU5416 treatment resulted in severe angio-obilterative PAH,accompanied by increased IL-6 expression in the lungs. c-Kit(+) and Sca-1(+) cells were found in and around the lung vascular lesions. Pan-caspase inhibiton,dexamethasone treatment,and depletion of B-lymphocytes using an anti-CD20 antibody suppressed this remodeling. OVA immunization also increased lung tissue hypoxia-induced factor-1α and VEGF expression. Our results also suggest that the increased expression of hypoxia-induced factor-1α and IL-6 induced by the allergic lung inflammation may be a component of the pathogenesis of PAH. View Publication -
Bagci-Onder T et al. (JUN 2013) Oncogene 32 23 2818--27Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors.
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and its efficacy has been tested in pre-clinical models by delivering it systemically as a purified ligand or via engineered stem cells (SC). However,about 50% of tumor lines are resistant to TRAIL and overcoming TRAIL resistance in aggressive tumors,such as glioblastoma-multiforme (GBM),and understanding the molecular dynamics of TRAIL-based combination therapies are critical to broadly use TRAIL as a therapeutic agent. In this study,we developed death receptor (DR)4/5-reporters that offer an imaging-based platform to identify agents that act in concert with a potent,secretable variant of TRAIL (S-TRAIL) by monitoring changes in DR4/5 expression. Utilizing these reporters,we show a differential regulation of DR4/5 when exposed to a panel of clinically relevant agents. A histone deacetylase inhibitor,MS-275,resulted in upregulation of DR4/5 in all GBM cell lines,and these changes could be followed in real time both in vitro and in vivo in mice bearing tumors and they correlated with increased TRAIL sensitivity. To further assess the dynamics of combinatorial strategies that overcome resistance of tumors to SC released S-TRAIL,we also engineered tumor cells to express live-cell caspase-reporters and SCs to express S-TRAIL. Utilizing DR4/5 and caspase reporters in parallel,we show that MS-275 sensitizes TRAIL-resistant GBM cells to stem cell (SC) delivered S-TRAIL by changing the time-to-death in vitro and in vivo. This study demonstrates the effectiveness of a combination of real-time reporters of TRAIL-induced apoptosis pathway in evaluating the efficacy of SC-TRAIL-based therapeutics and may have implications in targeting a broad range of cancers. View Publication -
Korkaya H et al. (AUG 2012) Molecular cell 47 4 570--84Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population.
Although inactivation of the PTEN gene has been implicated in the development of resistance to the HER2 targeting antibody trastuzumab,the mechanisms mediating this resistance remain elusive. We generated trastuzumab resistant cells by knocking down PTEN expression in HER2 overexpressing breast cancer cell lines and demonstrate that development of trastuzumab resistance in these cells is mediated by activation of an IL6 inflammatory feedback loop leading to expansion of the cancer stem cell (CSC) population. Long term trastuzumab treatment generates highly enriched CSCs which display an EMT phenotype secreting over 100-fold more IL6 than parental cells. An IL6 receptor antibody interrupted this inflammatory feedback loop reducing the cancer stem cell population resulting in decreased tumor growth and metastasis in mouse xenographs. These studies demonstrate that trastuzumab resistance may be mediated by an IL6 inflammatory loop and suggest that blocking this loop may provide alternative strategy to overcome trastuzumab resistance. View Publication -
Doss MX et al. (JUL 2012) PLoS ONE 7 7 e40288Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr).
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions,the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4,Nanog,Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl(2) (n = 22). Patch-clamp techniques were used to record I(Kr) and I(K1) from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (ptextless0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC,E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl(2),at concentrations that selectively block I(K1) (50-100 µM),failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible I(K1) in 53% (20/38) of the cells studied,but presence of I(Kr) in all (11/11). Consistent with the electrophysiological data,RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of I(K1) in the majority of cells,but robust expression of I(Kr.) In contrast to recently reported studies,our data point to major deficiencies of hiPSC-CM,with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on I(Kr) due to the absence of I(K1). Thus,efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications. View Publication -
Lagar'Kova MA et al. (FEB 2012) Bulletin of Experimental Biology and Medicine 152 4 516--518In vitro histogenesis of human embryonic stem cells into retina components
We developed a protocol of in vitro differentiation of human embryonic stem cells into three-dimensional structures histologically and molecularly similar to the developing retina. View Publication -
Ruiz-Herguido C et al. (JUL 2012) The Journal of experimental medicine 209 8 1457--68Hematopoietic stem cell development requires transient Wnt/β-catenin activity.
Understanding how hematopoietic stem cells (HSCs) are generated and the signals that control this process is a crucial issue for regenerative medicine applications that require in vitro production of HSC. HSCs emerge during embryonic life from an endothelial-like cell population that resides in the aorta-gonad-mesonephros (AGM) region. We show here that β-catenin is nuclear and active in few endothelial nonhematopoietic cells closely associated with the emerging hematopoietic clusters of the embryonic aorta during mouse development. Importantly,Wnt/β-catenin activity is transiently required in the AGM to generate long-term HSCs and to produce hematopoietic cells in vitro from AGM endothelial precursors. Genetic deletion of β-catenin from the embryonic endothelium stage (using VE-cadherin-Cre recombinase),but not from embryonic hematopoietic cells (using Vav1-Cre),precludes progression of mutant cells toward the hematopoietic lineage; however,these mutant cells still contribute to the adult endothelium. Together,those findings indicate that Wnt/β-catenin activity is needed for the emergence but not the maintenance of HSCs in mouse embryos. View Publication -
Wu F et al. (NOV 2012) Cellular signalling 24 11 1989--1998Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity.
Sox2 (sex-determining region Y-box protein 2) is a transcription factor regulating pluripotency in embryonic stem cells. Sox2 is aberrantly expressed in breast and other cancers,though its biological significance remains widely unexplored. To understand the significance of this aberrancy,we assessed the transcription activity of Sox2 in two Sox2-expressing breast cancer cell lines,MCF7 and ZR751,using a lentiviral Sox2 GFP reporter vector. Surprisingly,Sox2 transcription activity,as measured by GFP expression encoded in a Sox2 reporter construct,was detectable only in a small subset of cells in both cell lines. Purification of GFP+ cells (cells with Sox2 activity) and GFP- cells (cells without Sox2 activity) was enriched for two phenotypically distinct cell populations in both MCF7 and ZR751 cell lines. Specifically,GFP+ cells formed significantly more colonies in methylcellulose and more mammospheres in vitro compared to GFP- cells. These phenotypic differences are directly linked to Sox2 as siRNA knockdown of Sox2 in GFP+ cells abolished these abilities. To provide a mechanistic explanation to our observations,we performed gel shift and chromatin immunoprecipitation studies; Sox2 was found to bind to its DNA binding consensus sequence and the promoters of Cyclin D1 and Nanog (two known Sox2 downstream targets) only in GFP+ cells. GFP+ cells also up-regulated CD49f,phospho-GSK3$$,and $$-catenin. In summary,we have identified two novel phenotypically distinct cell subsets in two breast cancer cell lines based on their differential Sox2 transcription activity. We demonstrate that Sox2 transcription activity,and not its protein expression alone,underlies the tumorigenicity and cancer stem cell-like phenotypes in breast cancers. View Publication -
Vidler LR et al. (SEP 2012) Journal of medicinal chemistry 55 17 7346--59Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites.
Bromodomains are readers of the epigenetic code that specifically bind acetyl-lysine containing recognition sites on proteins. Recently the BET family of bromodomains has been demonstrated to be druggable through the discovery of potent inhibitors,sparking an interest in protein-protein interaction inhibitors that directly target gene transcription. Here,we assess the druggability of diverse members of the bromodomain family using SiteMap and show that there are significant differences in predicted druggability. Furthermore,we trace these differences in druggability back to unique amino acid signatures in the bromodomain acetyl-lysine binding sites. These signatures were then used to generate a new classification of the bromodomain family,visualized as a classification tree. This represents the first analysis of this type for the bromodomain family and can prove useful in the discovery of inhibitors,particularly for anticipating screening hit rates,identifying inhibitors that can be explored for lead hopping approaches,and selecting proteins for selectivity screening. View Publication -
Surmacz B et al. (SEP 2012) Stem Cells 30 9 1875--84Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules
Based on knowledge of early embryo development,where anterior neural ectoderm (ANE) development is regulated by native inhibitors of bone morphogenic protein (BMP) and Nodal/Activin signaling,most published protocols of human embryonic stem cell differentiation to ANE have demonstrated a crucial role for Smad signaling in neural induction. The drawbacks of such protocols include the use of an embryoid body culture step and use of polypeptide secreted factors that are both expensive and,when considering clinical applications,have significant challenges in terms of good manufacturing practices compliancy. The use of small molecules to direct differentiation of pluripotent stem cells toward a specified lineage represents a powerful approach to generate specific cell types for further understanding of biological function,for understanding disease processes,for use in drug discovery,and finally for use in regenerative medicine. We therefore aimed to find controlled and reproducible animal-component-free differentiation conditions that would use only small molecules. Here,we demonstrate that pluripotent stem cells can be reproducibly and efficiently differentiated to PAX6(+) (a marker of neuroectoderm) and OCT4(-) (a marker of pluripotent stem cells) cells with the use of potent small inhibitors of the BMP and Activin/Nodal pathways,and in animal-component-free conditions,replacing the frequently used Noggin and SB431542. We also show by transcript analysis,both at the population level and for the first time at the single-cell level,that differentiated cells express genes characteristic for the development of ANE,in particular for the development of the future forebrain. View Publication -
Chambers SM et al. (JUL 2012) Nature biotechnology 30 7 715--20Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors.
Considerable progress has been made in identifying signaling pathways that direct the differentiation of human pluripotent stem cells (hPSCs) into specialized cell types,including neurons. However,differentiation of hPSCs with extrinsic factors is a slow,step-wise process,mimicking the protracted timing of human development. Using a small-molecule screen,we identified a combination of five small-molecule pathway inhibitors that yield hPSC-derived neurons at textgreater75% efficiency within 10 d of differentiation. The resulting neurons express canonical markers and functional properties of human nociceptors,including tetrodotoxin (TTX)-resistant,SCN10A-dependent sodium currents and response to nociceptive stimuli such as ATP and capsaicin. Neuronal fate acquisition occurs about threefold faster than during in vivo development,suggesting that use of small-molecule pathway inhibitors could become a general strategy for accelerating developmental timing in vitro. The quick and high-efficiency derivation of nociceptors offers unprecedented access to this medically relevant cell type for studies of human pain. View Publication -
Zhang H et al. (JUL 2012) Proceedings of the National Academy of Sciences of the United States of America 109 29 11866--11871Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel.
Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG),leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS,∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG),which encode two repolarizing potassium currents known as I(Ks) and I(Kr). The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of I(Kr) by reducing voltage sensitivity of inactivation,not via slowing of deactivation,could more effectively restore normal QT duration if I(Ks) is reduced. Using a unique specific chemical activator for I(Kr) that has a primary effect of causing a right shift of V(1/2) for inactivation,we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed,this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast,an I(Kr) chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号