Liu Y et al. (APR 2014)
British journal of cancer 110 8 2063--2071
Lack of correlation of stem cell markers in breast cancer stem cells.
BACKGROUND Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers,identify the same population of cells,or equate to therapeutic response is controversial. METHODS We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo,comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin,docetaxol and radiotherapy. RESULTS CD24,CD44,ALDH and SOX2 expression,the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo,cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers,although ER-negative cells accumulate. CONCLUSIONS Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications,rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer.
View Publication
Buffington DA et al. (JAN 2012)
Cell medicine 4 1 33--43
Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device.
Renal cell therapy has shown clinical efficacy in the treatment of acute renal failure (ARF) and promise for treatment of end-stage renal disease (ESRD) by supplementing conventional small solute clearance (hemodialysis or hemofiltration) with endocrine and metabolic function provided by cells maintained in an extracorporeal circuit. A major obstacle in the widespread adoption of this therapeutic approach is the lack of a cryopreservable system to enable distribution,storage,and therapeutic use at point of care facilities. This report details the design,fabrication,and assessment of a Bioartificial Renal Epithelial Cell System (BRECS),the first all-in-one culture vessel,cryostorage device,and cell therapy delivery system. The BRECS was loaded with up to 20 cell-seeded porous disks,which were maintained by perfusion culture. Once cells reached over 5 A- 10(6) cells/disk for a total therapeutic dose of approximately 10(8) cells,the BRECS was cryopreserved for storage at -80°C or -140°C. The BRECS was rapidly thawed,and perfusion culture was resumed. Near precryopreservation values of cell viability,metabolic activity,and differentiated phenotype of functional renal cells were confirmed post-reconstitution. This technology could be extended to administer other cell-based therapies where metabolic,regulatory,or secretion functions can be leveraged in an immunoisolated extracorporeal circuit.
View Publication
Pabst C et al. (APR 2014)
Nature methods 11 4 436--42
Identification of small molecules that support human leukemia stem cell activity ex vivo.
Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However,currently available culture conditions do not prevent spontaneous differentiation of LSCs,which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells,several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway,which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound,UM729,that collaborates with AhR suppressors in preventing AML cell differentiation. Together,these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.
View Publication
Saitta B et al. (JUL 2014)
Stem cells and development 23 13 1464--1478
Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFβ1.
Skeletal dysplasias (SDs) are caused by abnormal chondrogenesis during cartilage growth plate differentiation. To study early stages of aberrant cartilage formation in vitro,we generated the first induced pluripotent stem cells (iPSCs) from fibroblasts of an SD patient with a lethal form of metatropic dysplasia,caused by a dominant mutation (I604M) in the calcium channel gene TRPV4. When micromasses were grown in chondrogenic differentiation conditions and compared with control iPSCs,mutant TRPV4-iPSCs showed significantly (Ptextless0.05) decreased expression by quantitative real-time polymerase chain reaction of COL2A1 (IIA and IIB forms),SOX9,Aggrecan,COL10A1,and RUNX2,all of which are cartilage growth plate markers. We found that stimulation with BMP2,but not TGF$\$1,up-regulated COL2A1 (IIA and IIB) and SOX9 gene expression,only in control iPSCs. COL2A1 (Collagen II) expression data were confirmed at the protein level by western blot and immunofluorescence microscopy. TRPV4-iPSCs showed only focal areas of Alcian blue stain for proteoglycans,while in control iPSCs the stain was seen throughout the micromass sample. Similar staining patterns were found in neonatal cartilage from control and patient samples. We also found that COL1A1 (Collagen I),a marker of osteogenic differentiation,was significantly (Ptextless0.05) up-regulated at the mRNA level in TRPV4-iPSCs when compared with the control,and confirmed at the protein level. Collagen I expression in the TRPV4 model also may correlate with abnormal staining patterns seen in patient tissues. This study demonstrates that an iPSC model can recapitulate normal chondrogenesis and that mutant TRPV4-iPSCs reflect molecular evidence of aberrant chondrogenic developmental processes,which could be used to design therapeutic approaches for disorders of cartilage.
View Publication
Yang L et al. ( 2014)
1114 245--267
CRISPR-cas-mediated targeted genome editing in human cells
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems have evolved as an adaptive surveillance and defense mechanism in bacteria and archaea that uses short RNAs to direct degradation of foreign genetic elements. Here,we present our protocol for utilizing the S. pyogenes type II bacterial CRISPR system to achieve sequence-specific genome alterations in human cells. In principle,any genomic sequence of the form N(19)NGG can be targeted with the generation of custom guide RNA (gRNA) which functions to direct the Cas9 protein to genomic targets and induce DNA cleavage. Here,we describe our methods for designing and generating gRNA expression constructs either singly or in a multiplexed manner,as well as optimized protocols for the delivery of Cas9-gRNA components into human cells. Genomic alterations at the target site are then introduced either through nonhomologous end joining (NHEJ) or through homologous recombination (HR) in the presence of an appropriate donor sequence. This RNA-guided editing tool offers greater ease of customization and synthesis in comparison to existing sequence-specific endonucleases and promises to become a highly versatile and multiplexable human genome engineering platform.
View Publication
Bartel MA and Schaffer DV ( 2014)
1114 169--179
Enhanced gene targeting of adult and pluripotent stem cells using evolved adeno-Associated virus
Efficient approaches for the precise genetic engineering of stem cells can enhance both basic and applied stem cell research. Adeno-associated virus (AAV) vectors have demonstrated high-efficiency gene delivery and gene targeting to numerous cell types,and AAV vectors developed specifically for gene delivery to stem cells have further increased gene targeting frequency compared to plasmid construct techniques. This chapter details the production and purification techniques necessary to generate adeno-associated viral vectors for use in high-efficiency gene targeting of adult or pluripotent stem cell applications. Culture conditions used to achieve high gene targeting frequencies in rat neural stem cells and human pluripotent stem cells are also described.
View Publication
Howden SE and Thomson JA ( 2014)
1114 37--55
Gene targeting of human pluripotent stem cells by homologous recombination.
The ability of human embryonic stem cells and induced pluripotent stem cells to differentiate into all adult cell types greatly facilitates the study of human development,disease pathogenesis,and the generation of screening systems to identify novel therapeutic agents. Autologous cell therapies based on patient-derived induced pluripotent stem cells also hold great promise for the treatment and correction of many inherited and acquired diseases. The full potential of human pluripotent stem cells can be unleashed by genetically modifying a chosen locus with minimal impact on the remaining genome,which can be achieved by targeting genes by homologous recombination. This chapter will describe a protocol for gene modification of pluripotent stem cells by homologous recombination and several methods for the screening and identification of successfully modified clones.
View Publication
Londoñ et al. (APR 2014)
Molecular cancer therapeutics 13 4 800--811
Effect of niclosamide on basal-like breast cancers.
Basal-like breast cancers (BLBC) are poorly differentiated and display aggressive clinical behavior. These tumors become resistant to cytotoxic agents,and tumor relapse has been attributed to the presence of cancer stem cells (CSC). One of the pathways involved in CSC regulation is the Wnt/$$-catenin signaling pathway. LRP6,a Wnt ligand receptor,is one of the critical elements of this pathway and could potentially be an excellent therapeutic target. Niclosamide has been shown to inhibit the Wnt/$$-catenin signaling pathway by causing degradation of LRP6. TRA-8,a monoclonal antibody specific to TRAIL death receptor 5,is cytotoxic to BLBC cell lines and their CSC-enriched populations. The goal of this study was to examine whether niclosamide is cytotoxic to BLBCs,specifically the CSC population,and if in combination with TRA-8 could produce increased cytotoxicity. Aldehyde dehydrogenase (ALDH) is a known marker of CSCs. By testing BLBC cells for ALDH expression by flow cytometry,we were able to isolate a nonadherent population of cells that have high ALDH expression. Niclosamide showed cytotoxicity against these nonadherent ALDH-expressing cells in addition to adherent cells from four BLBC cell lines: 2LMP,SUM159,HCC1187,and HCC1143. Niclosamide treatment produced reduced levels of LRP6 and $$-catenin,which is a downstream Wnt/$$-catenin signaling protein. The combination of TRA-8 and niclosamide produced additive cytotoxicity and a reduction in Wnt/$$-catenin activity. Niclosamide in combination with TRA-8 suppressed growth of 2LMP orthotopic tumor xenografts. These results suggest that niclosamide or congeners of this agent may be useful for the treatment of BLBC.
View Publication
Richter A et al. (MAR 2014)
Stem Cells 32 3 636--648
BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2
Bone morphogenetic proteins (BMPs) initiate differentiation in human embryonic stem cells (hESCs) but the exact mechanisms have not been fully elucidated. We demonstrate here that SLUG and MSX2,transcription factors involved in epithelial-mesenchymal transitions,essential features of gastrulation in development and tumor progression,are important mediators of BMP4-induced differentiation in hESCs. Phosphorylated Smad1/5/8 colocalized with the SLUG protein at the edges of hESC colonies where differentiation takes place. The upregulation of the BMP target SLUG was direct as shown by the binding of phosphorylated Smad1/5/8 to its promoter,which interrupted the formation of adhesion proteins,resulting in migration. Knockdown of SLUG by short hairpin RNA blocked these changes,confirming an important role for SLUG in BMP-mediated mesodermal differentiation. Furthermore,BMP4-induced MSX2 expression leads to mesoderm formation and then preferential differentiation toward the cardiovascular lineage.
View Publication
Bernet JD et al. (MAR 2014)
Nature medicine 20 3 265--71
p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice.
Skeletal muscle aging results in a gradual loss of skeletal muscle mass,skeletal muscle function and regenerative capacity,which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear,the skeletal muscle stem cell,or satellite cell,is required for muscle regeneration. Therefore,identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here,we show that a cell-autonomous loss in self-renewal occurs via alterations in fibroblast growth factor receptor-1,p38α and p38β mitogen-activated protein kinase signaling in satellite cells from aged mice. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus,our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveal potential therapeutic opportunities for the treatment of progressive muscle wasting.
View Publication
Tahamtani Y et al. (FEB 2014)
Cell journal 16 1 63--72
Stauprimide Priming of Human Embryonic Stem Cells toward Definitive Endoderm.
OBJECTIVE: In vitro production of a definitive endoderm (DE) is an important issue in stem cell-related differentiation studies and it can assist with the production of more efficient endoderm derivatives for therapeutic applications. Despite tremendous progress in DE differentiation of human embryonic stem cells (hESCs),researchers have yet to discover universal,efficient and cost-effective protocols. MATERIALS AND METHODS: In this experimental study,we have treated hESCs with 200 nM of Stauprimide (Spd) for one day followed by activin A (50 ng/ml; A50) for the next three days (Spd-A50). In the positive control group,hESCs were treated with Wnt3a (25 ng/ml) and activin A (100 ng/ml) for the first day followed by activin A for the next three days (100 ng/ml; W/A100-A100). RESULTS: Gene expression analysis showed up regulation of DE-specific marker genes (SOX17,FOXA2 and CXCR4) comparable to that observed in the positive control group. Expression of the other lineage specific markers did not significantly change (ptextless0.05). We also obtained the same gene expression results using another hESC line. The use of higher concentrations of Spd (400 and 800 nM) in the Spd-A50 protocol caused an increase in the expression SOX17 as well as a dramatic increase in mortality rate of the hESCs. A lower concentration of activin A (25 ng/ml) was not able to up regulate the DE-specific marker genes. Then,A50 was replaced by inducers of definitive endoderm; IDE1/2 (IDE1 and IDE2),two previously reported small molecule (SM) inducers of DE,in our protocol (Spd-IDE1/2). This replacement resulted in the up regulation of visceral endoderm (VE) marker (SOX7) but not DE-specific markers. Therefore,while the Spd-A50 protocol led to DE production,we have shown that IDE1/2 could not fully replace activin A in DE induction of hESCs. CONCLUSION: These findings can assist with the design of more efficient chemically-defined protocols for DE induction of hESCs and lead to a better understanding of the different signaling networks that are involved in DE differentiation of hESCs.
View Publication
Tateno H et al. (FEB 2014)
Scientific reports 4 4069
A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells.
While human pluripotent stem cells are attractive sources for cell-replacement therapies,a major concern remains regarding their tumorigenic potential. Thus,safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system,named the GlycoStem test,targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies.
View Publication