Madison JM et al. (JUN 2015)
Molecular Psychiatry 20 November 2013 703--17
Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities.
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD,little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD,we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially,no significant phenotypic differences were observed between iPSCs derived from the different family members. However,upon directed neural differentiation,we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity,including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3,a known regulator of WNT signaling,was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together,these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
View Publication
Chavez A et al. (APR 2015)
Nature Methods 12 4 326--328
The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However,modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator,VP64-p65-Rta (VPR),fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes,targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).
View Publication
Eggimann L et al. (MAY 2015)
Bone marrow transplantation 50 5 743--5
Kinetics of peripheral blood chimerism for surveillance of patients with leukemia and chronic myeloid malignancies after reduced-intensity conditioning allogeneic hematopoietic SCT.
Inhibition of CaMKK2 reverses age-associated decline in bone mass.
Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca(2+)/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual,mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study,we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume,microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age,WT mice sustain a significant decline in trabecular bone volume,microarchitecture and strength as well as cortical bone strength. However,treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume,quality,as well as trabecular and cortical bone strength. We also observed that regardless of age,male Camkk2(-/-) mice possessed significantly elevated trabecular bone volume,microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice,implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further,whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral mid-shaft geometry,the mid-shaft cortical wall thickness and material bending stress remained similar among the cohorts,implying that regardless of treatment,the material properties of the bone remain similar. Thus,our cumulative results provide evidence for the pharmacological inhibition of CaMKK2 as a bone anabolic strategy in combating age-associated osteoporosis.
View Publication
Flyak AI et al. (FEB 2015)
Cell 160 5 893--903
Mechanism of human antibody-mediated neutralization of Marburg virus
The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably,several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP,but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site,revealing a mechanism of filovirus inhibition.
View Publication
Garitaonandia I et al. ( 2015)
PloS one 10 2 e0118307
Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.
The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy,drug development,and studies of cellular differentiation and development. However,the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures,a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging,and feeder-free vs. mouse embryonic fibroblast feeder substrate,on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages,we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability,higher rates of cell proliferation,and persistence of OCT4/POU5F1-positive cells in teratomas,with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers,we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53,which was associated with decreased mRNA expression of TP53,as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures,we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.
View Publication
Kim M-SS et al. (FEB 2015)
PLoS ONE 10 2 e0118670
Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis
The use of human pluripotent cell progeny for cardiac disease modeling,drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success,recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR,which in turn induces the Activin-A and Bmp pathways,is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis,and to ultimately promote myocyte maturation,we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq,induction with CHIR during Day 1 (Days 0-1) was followed by immediate expression of Nodal ligands and receptors,followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50-100 ng/ml) during Day 0-1 efficiently induced definitive endoderm,whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency,even when CHIR alone was ineffective. Moreover,co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis,as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast,co-induction with CHIR plus low levels (3-10 ng/ml) of Bmp4 during Day 0-1 consistently and strongly inhibited cardiomyogenesis. These findings,which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression,are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages,while Bmp levels regulate subsequent allocation into mesodermal cell types.
View Publication
Freire M et al. ( 2015)
BioMed Research International 2015 1--7
Application of AMOR in craniofacial rabbit bone bioengineering
Endogenous molecular and cellular mediators modulate tissue repair and regeneration. We have recently described antibody mediated osseous regeneration (AMOR) as a novel strategy for bioengineering bone in rat calvarial defect. This entails application of anti-BMP-2 antibodies capable of in vivo capturing of endogenous osteogenic BMPs (BMP-2,BMP-4,and BMP-7). The present study sought to investigate the feasibility of AMOR in other animal models. To that end,we examined the efficacy of a panel of anti-BMP-2 monoclonal antibodies (mAbs) and a polyclonal Ab immobilized on absorbable collagen sponge (ACS) to mediate bone regeneration within rabbit calvarial critical size defects. After 6 weeks,de novo bone formation was demonstrated by micro-CT imaging,histology,and histomorphometric analysis. Only certain anti-BMP-2 mAb clones mediated significant in vivo bone regeneration,suggesting that the epitopes with which anti-BMP-2 mAbs react are critical to AMOR. Increased localization of BMP-2 protein and expression of osteocalcin were observed within defects,suggesting accumulation of endogenous BMP-2 and/or increased de novo expression of BMP-2 protein within sites undergoing bone repair by AMOR. Considering the ultimate objective of translation of this therapeutic strategy in humans,preclinical studies will be necessary to demonstrate the feasibility of AMOR in progressively larger animal models.
View Publication
Chichagova V et al. ( 2016)
1353 285--307
Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro,increase our understanding of human embryonic development,and provide clinically relevant cell types for transplantation,drug testing,and toxicology studies. Since their discovery,numerous advances have been made in order to eliminate issues such as vector integration into the host genome,low reprogramming efficiency,incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally,we illustrate methods by which to validate pluripotency of the resulting stem cell population.
View Publication
Elliott G et al. (DEC 2015)
Nature Communications 6 1 6363
Intermediate DNA methylation is a conserved signature of genome regulation
The role of intermediate methylation states in DNA is unclear. Here,to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity,we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers,exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation,are predominantly allele-independent and are conserved across individuals and between mouse and human,suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons,highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.
View Publication
Tafaleng EN et al. (JUL 2015)
Hepatology 62 1 147--157
Induced pluripotent stem cells model personalized variations in liver disease resulting from $\$1-antitrypsin deficiency.
UNLABELLED In the classical form of $\$1-antitrypsin deficiency (ATD),aberrant intracellular accumulation of misfolded mutant $\$1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function,proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation
View Publication
Youm Y-H et al. (MAR 2015)
Nature medicine 21 3 263--9
The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease.
The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation,caloric restriction,high-intensity exercise,or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however,the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB,but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate,suppresses activation of the NLRP3 inflammasome in response to urate crystals,ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family,CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11,inflammasome activation. Mechanistically,BHB inhibits the NLRP3 inflammasome by preventing K(+) efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK),reactive oxygen species (ROS),autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle,and independently of uncoupling protein-2 (UCP2),sirtuin-2 (SIRT2),the G protein-coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome-mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo,BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle-Wells syndrome,familial cold autoinflammatory syndrome and urate crystal-induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.
View Publication