Hyslop LA et al. (JUN 2016)
Nature 534 7607 383--386
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
Mitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable affected women to have a genetically related child with a greatly reduced risk of mtDNA disease. Here we report the first preclinical studies on pronuclear transplantation (PNT). Surprisingly,techniques used in proof-of-concept studies involving abnormally fertilized human zygotes were not well tolerated by normally fertilized zygotes. We have therefore developed an alternative approach based on transplanting pronuclei shortly after completion of meiosis rather than shortly before the first mitotic division. This promotes efficient development to the blastocyst stage with no detectable effect on aneuploidy or gene expression. After optimization,mtDNA carryover was reduced to textless2% in the majority (79%) of PNT blastocysts. The importance of reducing carryover to the lowest possible levels is highlighted by a progressive increase in heteroplasmy in a stem cell line derived from a PNT blastocyst with 4% mtDNA carryover. We conclude that PNT has the potential to reduce the risk of mtDNA disease,but it may not guarantee prevention.
View Publication
Bohannon C et al. ( 2016)
Nature communications 7 11826
Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection.
Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells-with T-cell help-undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific,induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells,which develop in germinal centres and then home to the bone marrow,IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly,their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However,these IgM plasma cells are probably not antigen-selected,as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally,antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge.
View Publication
Kim B-Y et al. ( 2016)
Experimental & molecular medicine 48 6 e237
Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC.
Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1,encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it,we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However,the mALK2 leads to inhibitory pluripotency maintenance,or impaired clonogenic potential after single-cell dissociation as an inevitable step,which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus,current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome,and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors,CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617GtextgreaterA. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern,as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time,labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies,which is hampered by inhibitory pluripotency-maintenance requirements,or vulnerability of single-cell-dissociated iPSCs.
View Publication
Kallas-Kivi A et al. ( 2016)
Stem Cells International 2016 1--16
Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells
The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore,understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study,we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES) cells (H9 cell line). Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise,expression of ectodermal (SOX1 and OTX2) and endodermal (GATA4 and FOXA2) markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133,we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion,lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential.
View Publication
van de Bunt M et al. (APR 2016)
Islets 8 3 83--95
Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model.
Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors,and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment,such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2,p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1,p-value = 8.6 × 10(-5)),showed transcriptional variation consistent with their known developmental roles. However,these analyses highlighted many other genes with stage-specific expression patterns,some of which may be novel drivers or markers of islet development. For example,the leptin receptor gene,LEPR,was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5,p-value = 2.0 × 10(-12)),suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes,including INS,ABCC8,and GLP1R,and enrichment of relevant GO-terms (e.g. insulin secretion"; odds ratio = 4.2
View Publication
Cavero I et al. (MAY 2016)
Journal of pharmacological and toxicological methods
Comprehensive in vitro Proarrhythmia Assay (CiPA): Pending issues for successful validation and implementation.
INTRODUCTION The Comprehensive in vitro Proarrhythmia Assay (CiPA) is a nonclinical Safety Pharmacology paradigm for discovering electrophysiological mechanisms that are likely to confer proarrhythmic liability to drug candidates intended for human use. TOPICS COVERED Key talks delivered at the 'CiPA on my mind' session,held during the 2015 Annual Meeting of the Safety Pharmacology Society (SPS),are summarized. Issues and potential solutions relating to crucial constituents [e.g.,biological materials (ion channels and pluripotent stem cell-derived cardiomyocytes),study platforms,drug solutions,and data analysis] of CiPA core assays are critically examined. DISCUSSION In order to advance the CiPA paradigm from the current testing and validation stages to a research and regulatory drug development strategy,systematic guidance by CiPA stakeholders is necessary to expedite solutions to pending and newly arising issues. Once a study protocol is proved to yield robust and reproducible results within and across laboratories,it can be implemented as qualified regulatory procedure.
View Publication
Yew CW and Tan YJ ( 2016)
1426 225--33
Generation of mouse monoclonal antibodies specific to Chikungunya virus using ClonaCell-HY hybridoma cloning kit
Monoclonal antibodies offer high specificity and this makes it an important tool for molecular biology,biochemistry and medicine. Typically,monoclonal antibodies are generated by fusing mouse spleen cells that have been immunized with the desired antigen with myeloma cells to create immortalized hybridomas. Here,we describe the generation of monoclonal antibodies that are specific to Chikungunya virus using ClonaCell-HY system.
View Publication
Thomas BB et al. (MAY 2016)
Investigative Ophthalmology and Visual Science 57 6 2877--2887
Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats
PURPOSE To determine the safety,survival,and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. METHODS Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN),group 2 (n = 59) received rCPCB-RPE1 implants,and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery),the eyes were examined histologically for cell survival,phagocytosis,and local toxicity. RESULTS Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry,suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. CONCLUSIONS These results demonstrate the safety,survival,and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.
View Publication
Brosh R et al. ( 2016)
Nature communications 7 May 11742
A dual molecular analogue tuner for dissecting protein function in mammalian cells.
Loss-of-function studies are fundamental for dissecting gene function. Yet,methods to rapidly and effectively perturb genes in mammalian cells,and particularly in stem cells,are scarce. Here we present a system for simultaneous conditional regulation of two different proteins in the same mammalian cell. This system harnesses the plant auxin and jasmonate hormone-induced degradation pathways,and is deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of two endogenous proteins with the expression of two exogenous proteins whose degradation is induced by external ligands in a rapid,reversible,titratable and independent manner. By engineering molecular tuners for NANOG,CHK1,p53 and NOTCH1 in mammalian stem cells,we have validated the applicability of the system and demonstrated its potential to unravel complex biological processes.
View Publication
Kwon H-J et al. ( 2016)
Nature communications 7 11686
Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition.
NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D,2B4 or DNAM-1 is insufficient for NF-κB activation. Rather,cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal,primarily mediated by NKG2D or DNAM-1,for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal,suggesting stepwise signalling checkpoint for NF-κB activation. Thus,our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses.
View Publication
Tsikritsis D et al. (MAY 2016)
Cytometry. Part A : the journal of the International Society for Analytical Cytology 1--23
Label-free biomarkers of human embryonic stem cell differentiation to hepatocytes.
Three different label-free,minimally invasive,live single cell analysis techniques were used to characterize embryonic stem cells,and the hepatocytes into which they were differentiated. Atomic Force Microscopy measures the cell's mechanical properties,Raman spectroscopy measures its chemical properties,and dielectrophoresis measures the membrane's capacitance. We were able to assign cell type of individual cells with accuracies of 96.5% (Atomic Force Microscopy),92.5 % (Raman spectroscopy),and *** % (Dielectrophoresis). These techniques,used either independently or in combination,offer label-free methods to study individual living cells. Although they can be applied to any phenotypical or environmental change,these techniques have most potential in human cell therapies where the use of biomarkers is best avoided. If all three properties are independent,then a combined accuracy of *** % can be achieved in cell characterization. We suggest how these methods could be combined into one microfluidic chip for cell sorting,and how they can be applied to cell culture.
View Publication
Wang L et al. (MAY 2016)
Nature neuroscience 19 7 888--96
Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex,which reflects the expansion of neural progenitors,especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex,whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex,and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically,Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus,robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
View Publication