技术资料
-
Jung Y et al. (SEP 2016) Proceedings of the National Academy of Sciences of the United States of AmericaThree-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies.
Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study,we probe the spatial relation of microvilli and T-cell receptors (TCRs),the major molecules responsible for antigen recognition on the T-cell membrane. To this end,an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced,based on two complementary superresolution microscopies. Strikingly,TCRs are found to be highly localized on microvilli,in both peripheral blood human T cells and differentiated effector T cells,and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli,immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form,with microvilli serving as anchors for specific T-cell surface molecules. View Publication -
Nath SC et al. (SEP 2016) Bioprocess and biosystems engineeringCulture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture.
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study,after determining the minimum inhibitory level of lactic acid for hiPSCs,a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically,about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture,a final cell density of (1.1 ± 0.1) × 10(6) cells mL(-1) was obtained,with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression,on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method,culture medium refinement by dialysis was established to remove toxic metabolites,recycle autocrine factors as well as other growth factors,and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture. View Publication -
Shin JW et al. (SEP 2016) Human molecular geneticsPermanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.
A comprehensive genetics-based precision medicine strategy to selectively and permanently inactivate only mutant,not normal allele,could benefit many dominantly inherited disorders. Here,we demonstrate the power of our novel strategy of inactivating the mutant allele using haplotype-specific CRISPR/Cas9 target sites in Huntington's disease (HD),a late-onset neurodegenerative disorder due to a toxic dominant gain-of-function CAG expansion mutation. Focusing on improving allele specificity,we combined extensive knowledge of huntingtin (HTT) gene haplotype structure with a novel personalized allele-selective CRISPR/Cas9 strategy based on Protospacer Adjacent Motif (PAM)-altering SNPs to target patient-specific CRISPR/Cas9 sites,aiming at the mutant HTT allele-specific inactivation for a given diplotype. As proof-of-principle,simultaneously using two CRISPR/Cas9 guide RNAs (gRNAs) that depend on PAM sites generated by SNP alleles on the mutant chromosome,we selectively excised ∼44 kb DNA spanning promoter region,transcription start site,and the CAG expansion mutation of the mutant HTT gene,resulting in complete inactivation of the mutant allele without impacting the normal allele. This excision on the disease chromosome completely prevented the generation of mutant HTT mRNA and protein,unequivocally indicating permanent mutant allele-specific inactivation of the HD mutant allele. The perfect allele selectivity with broad applicability of our strategy in disorders with diverse disease haplotypes should also support precision medicine through inactivation of many other gain-of-function mutations. View Publication -
Yang D et al. (NOV 2016) Life sciences 164 9--14Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells.
AIMS The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro,and test the effect of in vivo environments on the further maturation of hESCs derived cells. MAIN METHODS Embryoid bodies (EBs) formed from hESCs,with serum-free KSR-based medium and mesodermal specification related factors,CHIR,and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB,TGF β3,BMP4 in sequence for 24days. The morphology,FACS,histological staining as well as the expression of chondrogenic specific genes were detected in each stage,and further in vivo experiments,cell injections and tissue transplantations,further verified the formation of chondrocytes. KEY FINDINGS We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule,their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. SIGNIFICANCE The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes,and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease. View Publication -
Pettinato G et al. (SEP 2016) Scientific reports 6 32888Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition.
Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields,cellular heterogeneity,and limited scalability. In the present study,we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes,secreted hepatic proteins such as Albumin,Alpha Fetoprotein,and Fibrinogen,metabolized ammonia,and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes,such as LDL storage and uptake,ICG uptake and release,and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure,providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1. View Publication -
Polak U et al. (OCT 2016) Stem cells and developmentAlleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.
Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene,which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs,the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming,modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds,sodium butyrate (NaB) and Parnate,led to an increase in FXN expression and correction of repressive marks at the FXN locus,which persisted for several passages. However,prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore,we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together,these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications,thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA. View Publication -
Zagoura D et al. (SEP 2016) Neurochemistry internationalEvaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells.
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology,including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore,in the current study,we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM),as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes,NQO1 and SRXN1. Interestingly,exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover,rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH(+)) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation. View Publication -
Wang L et al. (DEC 2016) Materials science & engineering. C,Materials for biological applications 69 1125--1136Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs),dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However,there has been no report comparing hDPSCs,hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering,and (2) compare cell viability,proliferation and osteogenic differentiation of hDPSCs,hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs),and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs,BM-hiPSC-MSCs,and hBMSCs exhibited high alkaline phosphatase,runt-related transcription factor,collagen I,and osteocalcin gene expressions. Cell-synthesized minerals increased with time (ptextless0.05),with no significant difference among hDPSCs,BM-hiPSC-MSCs and hBMSCs (ptextgreater0.1). Mineralization by hDPSCs,BM-hiPSC-MSCs,and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion,hDPSCs,BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however,FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental,craniofacial and orthopedic applications. View Publication -
Freyer N et al. ( 2016) BioResearch open access 5 1 235--48Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor.
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine,pharmacological drug screening,and toxicity testing. However,full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study,we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 10(6) hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A,Wnt3a,and sodium butyrate to the culture medium. For further maturation,hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP),a marker for DE,was significantly (p textless 0.05) higher in 2D cultures,while secretion of albumin,a typical characteristic for mature hepatocytes,was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2,CYP2B6,and CYP3A4 in both groups,although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p textless 0.05) higher in 3D bioreactors compared with 2D cultures,which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin,cytokeratin 18 (CK18),and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition,cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures. View Publication -
Uhl B et al. (SEP 2016) BloodAged neutrophils contribute to the first line of defense in the acute inflammatory response.
Under steady-state conditions,aged neutrophils are removed from the circulation in bone marrow,liver,and spleen thereby maintaining myeloid cell homeostasis. The fate of these aged immune cells under inflammatory conditions,however,remains largely obscure. Here,we demonstrate that in the acute inflammatory response during endotoxemia aged neutrophils cease returning to the bone marrow and instead rapidly migrate to the site of inflammation. Having arrived in inflamed tissue,aged neutrophils were found to exhibit a higher phagocytic activity as compared to the subsequently recruited non-aged neutrophils. This distinct behavior of aged neutrophils under inflammatory conditions is dependent on specific age-related changes in their molecular repertoire that enable these 'experienced' immune cells to instantly translate inflammatory signals into immune responses. In particular,aged neutrophils engage toll-like receptor-4- and p38 mitogen-activated protein kinases-dependent pathways to induce conformational changes in β2 integrins which allow these phagocytes to effectively accomplish their mission in the front line of the inflammatory response. Hence,ageing in the circulation might represent a critical process for neutrophils that enables these immune cells to properly unfold their functional properties for host defense. View Publication -
Gao L et al. ( 2016) PloS one 11 9 e016214931P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy.
Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method,this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM,n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI,n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch,n = 6); and 4) Cell group,hiPSCs-cardiomyocytes,-endothelial cells,and -smooth muscle cells (2 million,each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch,n = 5). At 4 weeks,the creatine phosphate (PCr)/ATP ratio,CK forward flux rate (Flux PCr→ATP),and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover,the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced,but recovered in response to cell treatment. Thus,cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling,which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. View Publication -
Sugimine Y et al. (SEP 2016) International journal of hematologyA portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号