技术资料
-
Mace EM et al. (NOV 2016) The Journal of clinical investigationBiallelic mutations in IRF8 impair human NK cell maturation and function.
Human NK cell deficiencies are rare yet result in severe and often fatal disease,particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells,and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8,which encodes an interferon regulatory factor,as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells,and this impairment in terminal maturation was also observed in Irf8-/-,but not Irf8+/-,mice. We then determined that impaired maturation was NK cell intrinsic,and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together,these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease,thereby emphasizing a critical role for NK cells in human antiviral defense. View Publication -
Douthwaite J et al. (NOV 2016) Journal of immunology (Baltimore,Md. : 1950)A CD80-Biased CTLA4-Ig Fusion Protein with Superior In Vivo Efficacy by Simultaneous Engineering of Affinity, Selectivity, Stability, and FcRn Binding.
Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study,to our knowledge,we have,for the first time,used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands,CD80 and CD86,and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation. The majority of CTLA4 molecules showing the largest potency gains in primary in vitro and ex vivo human cell assays,using PBMCs from type 1 diabetes patients,had significant improvements in CD80,but only modest gains in CD86 binding. We furthermore observed different potency rankings between our lead molecule MEDI5265,abatacept,and belatacept,depending on which type of APC was used,with MEDI5265 consistently being the most potent. We then created fusions of both stability- and potency-optimized CTLA4 moieties with human Fc variants conferring extended plasma t1/2 In a cynomolgus model of T cell-dependent Ab response,the CTLA4-Ig variant MEDI5265 could be formulated at textgreater100 mg/ml for s.c. administration and showed superior efficacy and significantly prolonged serum t1/2 The combination of higher stability and potency with prolonged pharmacokinetics could be compatible with very infrequent,s.c. dosing while maintaining a similar level of immune suppression to more frequently and i.v. administered licensed therapies. View Publication -
Xue D et al. (NOV 2016) Journal of immunology (Baltimore,Md. : 1950)Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells.
The regulatory properties of B cells have been studied in autoimmune diseases; however,their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C),an axonal guidance molecule,plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure,with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells,indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19(+)CD138(+) cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c(-/-) CD19(+)CD138(+) cells induced marked pulmonary inflammation,eosinophilia,and increased bronchoalveolar lavage fluid IL-4 and IL-5,whereas adoptive transfer of wild-type CD19(+)CD138(+)IL-10(+) cells dramatically decreased allergic airway inflammation in wild-type and Sema4c(-/-) mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138(+) B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore,we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138(+) B cells. View Publication -
Villa M et al. (NOV 2016) The EMBO journalAryl hydrocarbon receptor is required for optimal B-cell proliferation.
The aryl hydrocarbon receptor (AhR),a transcription factor known for mediating xenobiotic toxicity,is expressed in B cells,which are known targets for environmental pollutants. However,it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR,FICZ,induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1,showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr(-/-)) B cells proliferate less than AhR-sufficient (Ahr(+/+)) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr(-/-) B cells are outcompeted by Ahr(+/+) cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno),a direct target of AhR,as a top candidate affected by AhR deficiency. View Publication -
Zluhan E et al. ( 2016) MethodsX 3 569--576Automating hESC differentiation with 3D printing and legacy liquid handling solutions.
Historically,the routine use of laboratory automation solutions has been prohibitively expensive for many laboratories. As legacy hardware has begun to emerge on the secondary market,automation is becoming an increasingly affordable option to augment workflow in virtually any laboratory. To assess the utility of legacy liquid handling in stem cell differentiation,a used liquid handling robot was purchased at auction to automate a stem cell differentiation protocol that gives rise to CD14 + CD45+ mononuclear cells. To maintain sterility,the automated liquid handling robot was housed in a custom constructed HEPA filtered enclosure. A custom cell scraper and a disposable filter box were designed and 3D printed to permit the robot intricate cell culture actions required by the protocol. All files for the 3D printed labware are uploaded and are freely available. •A used liquid handling robot was used to automate an hESC to monocyte differentiation protocol.•The robot-performed protocol induced monocytes as effectively as human technicians.•Custom 3D printed labware was made to permit certain cell culture actions and are uploaded for free access. View Publication -
Loo CP et al. (NOV 2016) Journal of immunology (Baltimore,Md. : 1950)Blocking Virus Replication during Acute Murine Cytomegalovirus Infection Paradoxically Prolongs Antigen Presentation and Increases the CD8+ T Cell Response by Preventing Type I IFN-Dependent Depletion of Dendritic Cells.
Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8(+) T cell response,which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication,we found that increased virus replication drove increased effector CD8(+) T cell differentiation,as expected. Paradoxically,however,increased virus replication dramatically decreased the size of the CD8(+) T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs,but they did not inhibit the response to inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8(+) T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells." View Publication -
Li R et al. (NOV 2016) Cancer researchMacrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways.
The ability of a cancer cell to migrate through the dense extracellular matrix (ECM) within and surrounding the solid tumor is a critical determinant of metastasis. Macrophages enhance invasion and metastasis in the tumor microenvironment but the basis for their effects are not fully understood. Using a microfluidic 3D cell migration assay,we found that the presence of macrophages enhanced the speed and persistence of cancer cell migration through a 3D extracellular matrix in a matrix metalloproteinases (MMP)-dependent fashion. Mechanistic investigations revealed that macrophage-released TNFα and TGFβ1 mediated the observed behaviors by two distinct pathways. These factors synergistically enhanced migration persistence through a synergistic induction of NF-κB-dependent MMP1 expression in cancer cells. In contrast,macrophage-released TGFβ1 enhanced migration speed primarily by inducing MT1-MMP expression. Taken together,our results reveal new insights into how macrophages enhance cancer cell metastasis,and they identify TNFα and TGFβ1 dual blockade as an anti-metastatic strategy in solid tumors. View Publication -
Workman MJ et al. (JAN 2017) Nature medicine 23 1 49--59Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system.
The enteric nervous system (ENS) of the gastrointestinal tract controls many diverse functions,including motility and epithelial permeability. Perturbations in ENS development or function are common,yet there is no human model for studying ENS-intestinal biology and disease. We used a tissue-engineering approach with embryonic and induced pluripotent stem cells (PSCs) to generate human intestinal tissue containing a functional ENS. We recapitulated normal intestinal ENS development by combining human-PSC-derived neural crest cells (NCCs) and developing human intestinal organoids (HIOs). NCCs recombined with HIOs in vitro migrated into the mesenchyme,differentiated into neurons and glial cells and showed neuronal activity,as measured by rhythmic waves of calcium transients. ENS-containing HIOs grown in vivo formed neuroglial structures similar to a myenteric and submucosal plexus,had functional interstitial cells of Cajal and had an electromechanical coupling that regulated waves of propagating contraction. Finally,we used this system to investigate the cellular and molecular basis for Hirschsprung's disease caused by a mutation in the gene PHOX2B. This is,to the best of our knowledge,the first demonstration of human-PSC-derived intestinal tissue with a functional ENS and how this system can be used to study motility disorders of the human gastrointestinal tract. View Publication -
Marchingo JM et al. (NOV 2016) Nature communications 7 13540T-cell stimuli independently sum to regulate an inherited clonal division fate.
In the presence of antigen and costimulation,T cells undergo a characteristic response of expansion,cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size,highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations,with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore,the net effect across multiple clones produces consistent,but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors,either through stochastic antigen interaction or by differences in initial receptor sensitivities. View Publication -
Jani V et al. (NOV 2016) Human immunologyRoot cause analysis of limitations of virtual crossmatch for kidney allocation to highly-sensitized patients.
Efficient allocation of deceased donor organs depends upon effective prediction of immunologic compatibility based on donor HLA genotype and recipient alloantibody profile,referred to as virtual crossmatching (VCXM). VCXM has demonstrated utility in predicting compatibility,though there is reduced efficacy for patients highly sensitized against allogeneic HLA antigens. The recently revised deceased donor kidney allocation system (KAS) has increased transplantation for this group,but with an increased burden for histocompatibility testing and organ sharing. Given the limitations of VCXM,we hypothesized that increased organ offers for highly-sensitized patients could result in a concomitant increase in offers rejected due to unexpectedly positive crossmatch. Review of 645 crossmatches performed for deceased donor kidney transplantation at our center did not reveal a significant increase in positive crossmatches following KAS implementation. Positive crossmatches not predicted by VCXM were concentrated among highly-sensitized patients. Root cause analysis of VCXM failures identified technical limitations of anti-HLA antibody testing as the most significant contributor to VCXM error. Contributions of technical limitations including additive/synergistic antibody effects,prozone phenomenon,and antigens not represented in standard testing panels,were evaluated by retrospective testing. These data provide insight into the limitations of VCXM,particularly those affecting allocation of kidneys to highly-sensitized patients. View Publication -
Papait A et al. (NOV 2016) Journal of tissue engineering and regenerative medicineAllogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment putatively fostering the wound healing.
Autologous platelet rich plasma (PRP) is clinically used to induce repair of different tissues through the release of bioactive molecules. In some patients,the production of an efficient autologous PRP is unfeasible due to their compromised health. We developed an allogeneic PRP mismatched for AB0 and Rh antigens. To broadcast its clinical applications avoiding side effects the outcome of allogeneic PRP on immune response should be defined. Thus,we investigated whether PRP affected the differentiation of peripheral blood monocytes to dendritic cells upon stimulation with granulocyte monocyte colony stimulating factor and interleukin-4. Indeed,these cells are the main players of immune response and tissue repair. PRP inhibited the differentiation of monocytes to CD1a(+) dendritic cells and favored the expansion of phagocytic CD163(+) CD206(+) fibrocyte-like cells. These cells produced inteleukin-10 and prostaglandin-E2,but not interferon-γ,upon stimulation with lipopolysaccharides. Moreover,they promoted the expansion of regulatory CD4(+) CD25(+) FoxP3(+) T cells upon allostimulation or antigen specific priming. Finally,the conditioned medium harvested from monocytes differentiated with PRP triggered a strong chemotactic effect on mesenchymal cells in both scratch and transwell migration assays. These results strongly suggest that allogeneic PRP can foster the differentiation of monocytes to a regulatory anti-inflammatory population possibly favoring wound healing. View Publication -
Devalla HD et al. (DEC 2016) EMBO molecular medicine 8 12 1390--1408TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT.
Genetic causes of many familial arrhythmia syndromes remain elusive. In this study,whole-exome sequencing (WES) was carried out on patients from three different families that presented with life-threatening arrhythmias and high risk of sudden cardiac death (SCD). Two French Canadian probands carried identical homozygous rare variant in TECRL gene (p.Arg196Gln),which encodes the trans-2,3-enoyl-CoA reductase-like protein. Both patients had cardiac arrest,stress-induced atrial and ventricular tachycardia,and QT prolongation on adrenergic stimulation. A third patient from a consanguineous Sudanese family diagnosed with catecholaminergic polymorphic ventricular tachycardia (CPVT) had a homozygous splice site mutation (c.331+1GtextgreaterA) in TECRL Analysis of intracellular calcium ([Ca(2+)]i) dynamics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from this individual (TECRLHom-hiPSCs),his heterozygous but clinically asymptomatic father (TECRLHet-hiPSCs),and a healthy individual (CTRL-hiPSCs) from the same Sudanese family,revealed smaller [Ca(2+)]i transient amplitudes as well as elevated diastolic [Ca(2+)]i in TECRLHom-hiPSC-CMs compared with CTRL-hiPSC-CMs. The [Ca(2+)]i transient also rose markedly slower and contained lower sarcoplasmic reticulum (SR) calcium stores,evidenced by the decreased magnitude of caffeine-induced [Ca(2+)]i transients. In addition,the decay phase of the [Ca(2+)]i transient was slower in TECRLHom-hiPSC-CMs due to decreased SERCA and NCX activities. Furthermore,TECRLHom-hiPSC-CMs showed prolonged action potentials (APs) compared with CTRL-hiPSC-CMs. TECRL knockdown in control human embryonic stem cell-derived CMs (hESC-CMs) also resulted in significantly longer APs. Moreover,stimulation by noradrenaline (NA) significantly increased the propensity for triggered activity based on delayed afterdepolarizations (DADs) in TECRLHom-hiPSC-CMs and treatment with flecainide,a class Ic antiarrhythmic drug,significantly reduced the triggered activity in these cells. In summary,we report that mutations in TECRL are associated with inherited arrhythmias characterized by clinical features of both LQTS and CPVT Patient-specific hiPSC-CMs recapitulated salient features of the clinical phenotype and provide a platform for drug screening evidenced by initial identification of flecainide as a potential therapeutic. These findings have implications for diagnosis and treatment of inherited cardiac arrhythmias. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号