技术资料
-
Kandasamy M et al. (MAR 2017) Cell and Tissue Research 368 3 531--549Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs)
Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487(LeX),5750(LeX) and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage,487(LeX)-,5750(LeX)- and 473HD-related glycans were differently expressed. Later,cells of the three germ layers in embryoid bodies (hEBs) and,even after neuralization of hEBs,subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC),LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs(FGF-2/EGF) derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs(FGF-2/EGF). Finally,we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487(LeX),5750(LeX) and 473HD are promising tools for identifying distinct stages during neural differentiation. View Publication -
Negraes PD et al. (MAR 2017) Translational psychiatry 7 3 e1060Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons.
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions,it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions,however,genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here,we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment,we identified a novel gene that appears to contribute to AN pathophysiology,TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions,especially anxiety disorders,we believe this report is its first association with AN. Moreover,our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement,and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease. View Publication -
Close JL et al. (MAR 2017) Neuron 93 5 1035--1048.e5Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation.
GABAergic interneurons are essential for neural circuit function,and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and,ultimately,for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production,with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons,we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders. View Publication -
Bogliotti YS et al. (JAN 2016) Reproduction,fertility,and development 29 1 108--1092 BOVINE EMBRYONIC STEM-LIKE CELLS DERIVED FROM IN VITRO-PRODUCED BLASTOCYSTS.
Embryonic stem cells (ESC) are derived from the inner cell mass (ICM) of preimplantation blastocysts. To date,it has been challenging to establish pluripotent ESC lines for domestic animals,which could be important for biotechnological applications,such as genetic engineering and SCNT,and biomedical research. The aim of this work was to derive and characterise bovine embryonic stem-like cells (bESC) from in vitro-produced bovine blastocysts. Embryos were produced by in vitro fertilization of in vitro-matured oocytes aspirated from abattoir ovaries and cultured in groups of 25 in 50-μL drops of KSOM (Evolve,Zenith Biotech) with 4mgmL(-1) BSA for 7 days until they reached the blastocyst stage (Ross et al.,2009 Reproduction 137,427-437). At that point,the zona pellucida (ZP) was removed using 1mgmL(-1) Pronase (Sigma,St. Louis,MO),and ZP-free blastocysts were washed 6 times in SOF-HEPES. Three derivation approaches were tested: ZP-free whole blastocysts,mechanically isolated ICM,and immunosurgery-derived ICM. In each case,individual blastocysts/ICM were placed in 1 well of a 12-well dish seeded with a monolayer of mouse embryo fibroblasts (MEF) and cultured in mTeSR1 basal medium (without growth factors) supplemented with 20ngmL(-1) FGF2 and 2.5μM IWR1 (CTFR) (Wu et al. 2015 Nature 521,316-321). After 48h,blastocysts/ICM that failed to adhere were physically pressed against the bottom of the culture dish with a 22-gauge needle under a stereoscope to aid attachment. Thereafter,the media was changed daily. Outgrowths (after 6-7 days in culture) were dissociated and passaged using TrypLE and re-seeded in the presence of ROCK inhibitor (Y-27632,10μM) onto newly prepared wells containing MEF. Established bESC lines were cultured on MEF and passaged every 4 to 5 days at a 1:10 split ratio. The bESC lines were characterised by immunofluorescence (IF),RNA-seq,and teratoma formation. The efficiency of cell line derivation (evaluated at passage 3) was similar for the 3 approaches: whole blastocysts (9/16,56.3%),mechanical ICM isolation (7/12,58.3%),and immunosurgical ICM isolation (7/16,43.8%). The bESC were passaged and cultured long-term (more than 15 passages) and were subjected to several rounds of freezing and thawing while retaining their morphology and characteristics. IF analysis showed that long-term cultured bESC expressed the markers SOX2 and OCT4 (pluripotency),but did not express CDX2 (trophectoderm) or GATA6 (primitive endoderm). RNAseq analysis of 2 bESC lines showed that ICM markers (POU5F1,NANOG,SOX2,LIN28B,DNAMT3B,UTF1,SALL4) were expressed (RPKMtextgreater0.4),while trophectoderm markers (CDX2,GATA2,GATA3,FGF4,TFAP2A) and primitive endoderm markers (GATA6,HNF4A) were not expressed (RPKMtextless0.4). Finally,bESC lines (n=2) were able to form teratomas in immunodeficient mice. The teratomas contained tissues representative of the 3 germ lineages and expressed lineage-specific markers (ectoderm: TUJ1,endoderm: FOXA2,and mesoderm: ASM). In conclusion,the culture condition used in this work (CTFR) enables robust derivation and long-term in vitro propagation of pluripotent bESC. View Publication -
Asai A et al. (MAR 2017) Development (Cambridge,England) 144 6 1056--1064Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells.
A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects,we first established a liver organoid using human induced pluripotent stem cells (iPSCs),mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids,resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions,we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form,their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs,resulting in the expression of bile salt export pump. In conclusion,the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids,but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes. View Publication -
Xia N et al. (MAR 2017) Cell reports 18 10 2533--2546A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations.
Generation of midbrain dopaminergic (mDA) neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson's disease (PD). However,heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here,we report the generation of a human embryonic stem cell (hESC) line with a tyrosine hydroxylase (TH)-RFP (red fluorescent protein) reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac,H3K4me1,and 5-hydroxymethylcytosine [5hmC]) at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD. View Publication -
Jangi M et al. (MAR 2017) Proceedings of the National Academy of Sciences of the United States of America 114 12 E2347--E2356SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Spinal muscular atrophy (SMA),an autosomal recessive neuromuscular disease,is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product,survival of motor neuron (SMN),is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention,particularly of minor U12 introns,in the spinal cord of mice 30 d after SMA induction,which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response,manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns,high in GC content,served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures,leading to motor neuron death. View Publication -
Gué et al. (JUN 2017) Diabetes 66 6 1470--1478Functional Human Beige Adipocytes From Induced Pluripotent Stem Cells.
Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes,our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties,including upregulation of thermogenic genes,increased mitochondrial content,and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue,capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening. View Publication -
Webb RL et al. (APR 2017) Cellular reprogramming 19 2 88--94Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes.
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs,here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA,TRKB,and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli,analgesics,and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival. View Publication -
Pollak J et al. (MAR 2017) PLOS ONE 12 3 e0172884Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation,migration,and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme,a highly aggressive brain cancer,suggesting that ion channel expression may be perturbed in this population. However,little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing,we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance,expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally,genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes,gene mutations,survival outcomes,regional tumor expression,and experimental responses to loss-of-function. Together,the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. View Publication -
Xu X et al. (MAR 2017) Stem Cell Reports 8 3 619--633Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs. View Publication -
Bayat Mokhtari R et al. (DEC 2017) BMC Cancer 17 1 156Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma
BACKGROUND Neuroblastoma (NB),a tumor of the primitive neural crest,despite aggressive treatment portends a poor long-term survival for patients with advanced high stage NB. New treatment strategies are required. METHODS We investigated coordinated targeting of essential homeostatic regulatory factors involved in cancer progression,histone deacetylases (HDACs) and carbonic anhydrases (CAs). RESULTS We evaluated the antitumor potential of the HDAC inhibitor (HDACi),pyridylmethyl-N-4-[(2-aminophenyl)-carbamoyl]-benzyl-carbamate (MS-275) in combination with a pan CA inhibitor,acetazolamide (AZ) on NB SH-SY5Y,SK-N-SH and SK-N-BE(2) cells. The key observation was that the combination AZ + MS-275 significantly inhibited growth,induced cell cycle arrest and apoptosis,and reduced migration capacity of NB cell line SH-SY5Y. In addition,this combination significantly inhibited tumor growth in vivo,in a pre-clinical xenograft model. Evidence was obtained for a marked reduction in tumorigenicity and in the expression of mitotic,proliferative,HIF-1α and CAIX. NB xenografts of SH-SY5Y showed a significant increase in apoptosis. CONCLUSION MS-275 alone at nanomolar concentrations significantly reduced the putative cancer stem cell (CSC) fraction of NB cell lines,SH-SY5Y and SK-N-BE(2),in reference to NT2/D1,a teratocarcinoma cell line,exhibiting a strong stem cell like phenotype in vitro. Whereas stemness genes (OCT4,SOX2 and Nanog) were found to be significantly downregulated after MS-275 treatment,this was further enhanced by AZ co-treatment. The significant reduction in initial tumorigenicity and subsequent abrogation upon serial xenografting suggests potential elimination of the NB CSC fraction. The significant potentiation of MS-275 by AZ is a promising therapeutic approach and one amenable for administration to patients given their current clinical utility. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号