技术资料
-
Lam RS et al. ( 2017) PloS one 12 1 e0169506Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures.
Differentiated neurons can be rapidly acquired,within days,by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons,called iNGNs,which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation,including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2,called CatCh,we could control iNGN activity with blue light stimulation. In combination with optogenetic tools,iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity,and these networks had excitatory glutamatergic synapses,which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings,whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission,along with the ability to scale-up the size of the cultures. View Publication -
Kleinman CL et al. (JAN 2014) Nature Genetics 46 1 39--44Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR
Embryonal tumors with multilayered rosettes (ETMRs) are rare,deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified,in all cases,C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors,cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2,a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic,brain-specific DNMT3B isoform. View Publication -
Kim JJ et al. (JAN 2017) Scientific reports 7 39406Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells.
While distinct stem cell phenotypes follow global changes in chromatin marks,single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark textural image informatics,we developed a novel approach,termed EDICTS (Epi-mark Descriptor Imaging of Cell Transitional States),to discern chromatin organizational changes,demarcate lineage gradations across a range of stem cell types and robustly track lineage restriction kinetics. We demonstrate the utility of EDICTS by predicting the lineage progression of stem cells cultured on biomaterial substrates with graded nanotopographies and mechanical stiffness,thus parsing the role of specific biophysical cues as sensitive epigenetic drivers. We also demonstrate the unique power of EDICTS to resolve cellular states based on epi-marks that cannot be detected via mass spectrometry based methods for quantifying the abundance of histone post-translational modifications. Overall,EDICTS represents a powerful new methodology to predict single cell lineage decisions by integrating high content super-resolution nanoscopy and imaging informatics of the nuclear organization of epi-marks. View Publication -
Khaled WT et al. (JAN 2015) Nature communications 6 5987BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells.
Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here,we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation,whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model,Bcl11a deletion substantially decreases tumour formation,even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level,Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus,BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies. View Publication -
Kaur G et al. (JUL 2013) Journal of Clinical Neuroscience 20 7 1014--1018G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells
Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with high mortality and has been well known to involve many molecular pathways,including G-protein coupled receptor (GPCR)-mediated signaling (such as epithelial growth factor receptor [EGFR] and platelet derived growth factor receptor [PDGFR]). G protein-coupled receptor kinases (GRK) directly regulate GPCR activity by phosphorylating activated agonist-bound receptors to desensitize signaling and internalize receptors through beta-arrestins. Recent studies in various cancers,including prostate and breast cancer,have highlighted the role of change in GRK expression to oncogenesis and tumor proliferation. In this study,we evaluated the expression of GRK5 in grade II to grade IV glioma specimens using immunohistochemistry and found that GRK5 expression levels are highly correlated with aggressiveness of glioma. We used culture conditions to selectively promote the growth of either glioblastoma cells with stem cell markers (GSC) or differentiated glioblastoma cells (DGC) from fresh GBM specimens. GSC are known to be highly invasive and mobile,and have the capacity to self-renew and are more resistant to chemotherapy and radiation compared to differentiated populations of GBM. We examined the expression of GRK5 in these two sets of culturing conditions for GBM cells and found that GRK5 expression is upregulated in GSC compared to differentiated GBM cells. To better understand the role of GRK5 in GBM-derived stem cells,we created stable GRK5 knockdown and evaluated the proliferation rate. Using an ATP chemiluminescence assay,we show,for the first time,that knocking down the expression of GRK5 decreased the proliferation rate of GSC in contrast to control. View Publication -
Katikireddy KR et al. (OCT 2016) The American Journal of Pathology 186 10 2736--2750Existence of Neural CrestDerived Progenitor Cells in Normal and Fuchs Endothelial Dystrophy Corneal Endothelium
Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma,aging,and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein,we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging,propensity to form spheres,and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2,OCT4,LGR5,TP63 (p63),as well as neural crest marker genes PSIP1 (p75(NTR)),PAX3,SOX9,AP2B1 (AP-2β),and NES,generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2,β-III tubulin,and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion,we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies. View Publication -
Kang HS et al. (DEC 2015) Journal of Korean medical science 30 12 1764--76Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation.
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However,ADSCs require invasive procedures,and has potential complications. Recently,urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study,we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization,and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation,colony formation,cell surface markers,immune modulation,chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3,5,and 7. USCs showed high cell proliferation rate,enhanced colony forming ability,strong positive for stem cell markers expression,high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3,5,and 7. In chromosome stability analysis,both cells showed normal karyotype through all passages. In analysis of multi-lineage capability,USCs showed higher myogenic,neurogenic,and endogenic differentiation rate,and lower osteogenic,adipogenic,and chondrogenic differentiation rate compared to ADSCs. Therefore,we expect that USC can be an alternative autologous stem cell source for muscle,neuron and endothelial tissue reconstruction instead of ADSCs. View Publication -
Kang HM et al. (JAN 2018) Nature biotechnology 36 1 89--94Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.
Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid,massively parallel profiling of transcriptomes. However,assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool,demuxlet,that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data,we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples,demuxlet correctly recovers the sample identity of<99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-β and perform eQTL analysis on 23 pooled samples. View Publication -
Jounaidi Y et al. (NOV 2017) Cancer research 77 21 5938--5951Tethering IL2 to Its Receptor IL2Rβ Enhances Antitumor Activity and Expansion of Natural Killer NK92 Cells.
IL2 is an immunostimulatory cytokine for key immune cells including T cells and natural killer (NK) cells. Systemic IL2 supplementation could enhance NK-mediated immunity in a variety of diseases ranging from neoplasms to viral infection. However,its systemic use is restricted by its serious side effects and limited efficacy due to activation of T regulatory cells (Tregs). IL2 signaling is mediated through interactions with a multi-subunit receptor complex containing IL2Rα,IL2Rβ,and IL2Rγ. Adult natural killer (NK) cells express only IL2Rβ and IL2Rγ subunits and are therefore relatively insensitive to IL2. To overcome these limitations,we created a novel chimeric IL2-IL2Rβ fusion protein of IL2 and its receptor IL2Rβ joined via a peptide linker (CIRB). NK92 cells expressing CIRB (NK92CIRB) were highly activated and expanded indefinitely without exogenous IL2. When compared with an IL2-secreting NK92 cell line,NK92CIRB were more activated,cytotoxic,and resistant to growth inhibition. Direct contact with cancer cells enhanced the cytotoxic character of NK92CIRB cells,which displayed superior in vivo antitumor effects in mice. Overall,our results showed how tethering IL2 to its receptor IL2Rβ eliminates the need for IL2Rα and IL2Rβ,offering a new tool to selectively activate and empower immune therapy. Cancer Res; 77(21); 5938-51. textcopyright2017 AACR. View Publication -
Jing W et al. (OCT 2017) Cancer research 77 20 5676--5686T Cells Deficient in Diacylglycerol Kinase ζ Are Resistant to PD-1 Inhibition and Help Create Persistent Host Immunity to Leukemia.
Efforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study,we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia,we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ-/-) mice than wild-type mice. T cells transferred from DGKζ-deficient mice to wild-type tumor-bearing recipients conferred this benefit. Leukemia clearance was similar to mice treated with anti-PD-L1. Strikingly,we found that the activity of adoptively transferred DGKζ-/- T cells relied partly on induction of sustainable host T-cell immunity. Transferring DGKζ-deficient T cells increased the levels of IFNγ and other cytokines in recipient mice,especially with coadministration of anti-PD-L1. Overall,our results offered evidence that targeting DGKζ may leverage the efficacy of adoptive T-cell and immune checkpoint therapies in leukemia treatment. Furthermore,they suggest that DGKζ targeting might decrease risks of antigen escape or resistance to immune checkpoint blockade. Cancer Res; 77(20); 5676-86. textcopyright2017 AACR. View Publication -
Jiang S et al. (JAN 2018) Cell metabolismLet-7 Suppresses B Cell Activation through Restricting the Availability of Necessary Nutrients.
The control of uptake and utilization of necessary extracellular nutrients-glucose and glutamine-is an important aspect of B cell activation. Let-7 is a family of microRNAs known to be involved in metabolic control. Here,we employed several engineered mouse models,including B cell-specific overexpression of Lin28a or the let-7a-1/let-7d/let-7f-1 cluster (let-7adf) and knockout of individual let-7 clusters to show that let-7adf specifically inhibits T cell-independent (TI) antigen-induced immunoglobulin (Ig)M antibody production. Both overexpression and deletion of let-7 in this cluster leads to altered TI-IgM production. Mechanistically,let-7adf suppresses the acquisition and utilization of key nutrients,including glucose and glutamine,through directly targeting hexokinase 2 (Hk2) and by repressing a glutamine transporter Slc1a5 and a key degradation enzyme,glutaminase (Gls),a mechanism mediated by regulation of c-Myc. Our results suggest a novel role of let-7adf as a metabolic brake" on B cell antibody production." View Publication -
Jiang P et al. (OCT 2014) British Journal of Cancer 111 8 1562--1571In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells
BACKGROUND The increasing usage of statins (the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) has revealed a number of unexpected beneficial effects,including a reduction in cancer risk. METHODS We investigated the direct anticancer effects of different statins approved for clinical use on human breast and brain cancer cells. We also explored the effects of statins on cancer cells using in silico simulations. RESULTS In vitro studies showed that cerivastatin,pitavastatin,and fluvastatin were the most potent anti-proliferative,autophagy inducing agents in human cancer cells including stem cell-like primary glioblastoma cell lines. Consistently,pitavastatin was more effective than fluvastatin in inhibiting U87 tumour growth in vivo. Intraperitoneal injection was much better than oral administration in delaying glioblastoma growth. Following statin treatment,tumour cells were rescued by adding mevalonate and geranylgeranyl pyrophosphate. Knockdown of geranylgeranyl pyrophosphate synthetase-1 also induced strong cell autophagy and cell death in vitro and reduced U87 tumour growth in vivo. These data demonstrate that statins main effect is via targeting the mevalonate synthesis pathway in tumour cells. CONCLUSIONS Our study demonstrates the potent anticancer effects of statins. These safe and well-tolerated drugs need to be further investigated as cancer chemotherapeutics in comprehensive clinical studies. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 70 项目
- HLA 52 项目
- 上皮细胞生物学 269 项目
- 免疫 1012 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 48 项目
- 嵌合体 25 项目
- 干细胞生物学 2827 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 7 项目
- 新陈代谢 7 项目
- 杂交瘤制备 2 项目
- 疾病建模 248 项目
- 癌症 6 项目
- 神经科学 650 项目
- 移植研究 100 项目
- 类器官 178 项目
- 细胞外囊泡研究 10 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 113 项目
- 细胞系制备 191 项目
- 脐带血库 64 项目
- 血管生成细胞研究 1 项目
- 传染病 64 项目
- 内皮细胞生物学 7 项目
- 杂交瘤生成 14 项目
- 癌症研究 724 项目
- 血管生成细胞研究 51 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 11 项目
- CellShield 1 项目
- CellSTACK 1 项目
- DermaCult 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ES-Cult 78 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- Maestro 2 项目
- Matrigel 2 项目
- MegaCult 37 项目
- STEMprep 11 项目
- ALDEFLUOR 237 项目
- AggreWell 82 项目
- ArciTect 38 项目
- BloodStor 2 项目
- BrainPhys 84 项目
- CellAdhere 3 项目
- ClonaCell 107 项目
- CloneR 9 项目
- CryoStor 75 项目
- EC-Cult 1 项目
- EasySep 963 项目
- EpiCult 15 项目
- HemaTox 4 项目
- HepatiCult 32 项目
- Hypothermosol 1 项目
- ImmunoCult 39 项目
- IntestiCult 213 项目
- Lymphoprep 12 项目
- MammoCult 45 项目
- MesenCult 164 项目
- MethoCult 499 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 373 项目
- NeuroFluor 3 项目
- PBS-MINI 8 项目
- PancreaCult 11 项目
- PneumaCult 119 项目
- RSeT 13 项目
- ReLeSR 10 项目
- RoboSep 43 项目
- RosetteSep 268 项目
- STEMdiff 193 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 38 项目
- SmartDish 1 项目
- StemSpan 251 项目
- TeSR 1545 项目
- ThawSTAR 5 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 229 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 15 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- NK 细胞 162 项目
- PSC衍生 37 项目
- T 细胞 441 项目
- 上皮细胞 143 项目
- 中胚层 5 项目
- 乳腺细胞 95 项目
- 先天性淋巴细胞 32 项目
- 全血 10 项目
- 其他子集 1 项目
- 其他细胞系 10 项目
- 内皮细胞 11 项目
- 内胚层 4 项目
- 前列腺细胞 18 项目
- 单个核细胞 93 项目
- 单核细胞 178 项目
- 多能干细胞 1986 项目
- 小胶质细胞 13 项目
- 巨噬细胞 42 项目
- 巨核细胞 10 项目
- 心肌细胞 21 项目
- 成骨细胞 10 项目
- 星形胶质细胞 14 项目
- 杂交瘤细胞 92 项目
- 树突状细胞(DCs) 118 项目
- 气道细胞 4 项目
- 淋巴细胞 73 项目
- 癌细胞及细胞系 149 项目
- 癌细胞和细胞系 1 项目
- 白细胞 24 项目
- 白细胞单采样本 13 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 3 项目
- 神经元 1 项目
- 神经干/祖细胞 465 项目
- 神经细胞 12 项目
- 粒细胞及其亚群 96 项目
- 红系细胞 12 项目
- 红细胞 13 项目
- 肌源干/祖细胞 11 项目
- 肝细胞 40 项目
- 肠道细胞 103 项目
- 肾细胞 4 项目
- 肿瘤细胞 27 项目
- 胰腺细胞 17 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 103 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 1 项目
- 角质形成细胞 1 项目
- 调节性细胞 10 项目
- 软骨细胞 9 项目
- 造血干/祖细胞 968 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 25 项目
- 间充质干/祖细胞 188 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 3 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 2 项目
- 髓系细胞 135 项目
- 肾脏细胞 8 项目
- CD4+T细胞 100 项目
- CD8+T细胞 86 项目
- PSC衍生上皮细胞 39 项目
- PSC衍生中胚层 25 项目
- PSC衍生内皮细胞 20 项目
- PSC衍生内胚层 28 项目
- PSC衍生心肌细胞 26 项目
- PSC衍生神经细胞 130 项目
- PSC衍生肝细胞 18 项目
- PSC衍生造血干细胞 39 项目
- PSC衍生间充质细胞 27 项目
- 其他T细胞亚型 31 项目
- 呼吸道细胞 96 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 17 项目
- 神经元 201 项目
- 调节性T细胞 59 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号