M. Drukker et al. (may 2012)
Nature biotechnology 30 6 531--42
Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.
To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs),we screened self-renewing,BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures,including CXCR4(+) cells,expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm,trophoblast and vascular endothelium,suggesting correspondence to gastrulation-stage primitive streak,chorion and allantois precursors,respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny,APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.
View Publication
文献
Liu J et al. (MAY 2012)
PLoS ONE 7 5 e37559
Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes
We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent,stem cell-derived cardiomyocytes,including contraction force,rate,duration,and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy,and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive,inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents,or as a platform for studying cardiomyocyte biology.
View Publication
文献
Onyshchenko MI et al. (JAN 2012)
Stem Cells International 2012 634914
Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells.
The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells,and is responsible for the radioactive iodine accumulation. However,treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression,(125)I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells,as was previously done for mouse embryonic stem cells. First,we obtained definitive endoderm from human ESCs. Second,we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors,with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency,endoderm and thyroid markers and (125)I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood.
View Publication
文献
Li X et al. (AUG 2012)
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 7 8 1235--45
Aldehyde dehydrogenase 1A1 possesses stem-like properties and predicts lung cancer patient outcome.
INTRODUCTION: Lung cancer contains a small population of cancer stem cells that contribute to its initiation and progression. We investigated the biological function and clinical significance of aldehyde dehydrogenase 1A1 (ALDH1A1) in non-small-cell lung carcinoma (NSCLC). METHODS: ALDH1A1 assay or small interfering RNA transfection was employed to isolate ALDH1A1+ cells or knock down ALDH1A1 expression in H2087 cells,respectively. Biological functions of ALDH1A1+ and ALDH1A1 silenced cells were investigated using in vitro and in vivo methods. ALDH1A1 expression was analyzed using immunohistochemistry on tissue microarrays with 179 lung cancer tissues and 26 normal lung tissues. RESULTS: The abilities of clone formation,proliferation,cell growth,and migration were increased in ALDH1A1+ and ALDH1A1 silenced cells. ALDH1A1+ lung cancer cells initiated tumors that resembled the histopathologic characteristics and heterogeneity of the parental lung cancer cells in mice. The silencing of ALDH1A1 expression in H2087 lung cancer cells inhibited cell proliferation and migration significantly. ALDH1A1 was expressed in 42% of normal lung tissues (11 of 26),with strong expression in the basal cells and globular cells of the normal bronchus and weak expression in the alveolar epithelial cells. Compared with normal lung tissues,45% of NSCLC samples (81 of 179) were read as positive for ALDH1A1. Positive ALDH1A1 expression was correlated with patients' smoking status (p = 0.022),lymph-node metastasis (p = 0.006),clinical stage (p = 0.004),and a decreased overall survival time (p textless 0.001). Positive ALDH1A1 expression in lung cancer tissues was an independent prognostic factor for NSCLC (odds ratio = 5.232,p textless 0.001). CONCLUSION: Elucidating the biological functions of ALDH1A1 could be helpful in studying lung tumorigenesis and for developing new therapeutic approaches.
View Publication
文献
Peltz L et al. (JAN 2012)
PloS one 7 5 e37162
Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development.
Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However,these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking,which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study,we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs),a type of adult stem cells that reside in a number of tissues,at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM,resveratrol promotes cell self-renewal by inhibiting cellular senescence,whereas at 5 µM or above,resveratrol inhibits cell self-renewal by increasing senescence rate,cell doubling time and S-phase cell cycle arrest. At 1 µM,its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect,accompanied with increased senescence rate. At all concentrations,resveratrol promotes osteogenic differentiation in a dosage dependent manner,which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary,resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs.
View Publication
文献
Yu QC et al. (JUN 2012)
Blood 119 26 6243--54
APELIN promotes hematopoiesis from human embryonic stem cells.
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein-coupled APELIN receptor (APLNR). APLNR-positive cells,identified by binding of the fluoresceinated peptide ligand,APELIN (APLN),or an anti-APLNR mAb,were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs),increased the expression of hematoendothelial genes in differentiating hESCs,and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore,APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
View Publication
文献
Nishida S et al. (JUL 2012)
The Journal of urology 188 1 294--9
Gene expression profiles of prostate cancer stem cells isolated by aldehyde dehydrogenase activity assay.
PURPOSE: Prostate cancer cells include a small population of cancer stem-like/cancer initiating cells,which have roles in cancer initiation and progression. Recently aldehyde dehydrogenase activity was used to isolate stem cells of various cancer and normal cells. We evaluated the aldehyde dehydrogenase activity of the human prostate cancer cell line 22Rv1 (ATCC®) with the ALDEFLUOR® assay and determined its potency as prostate cancer stem-like/cancer initiating cells. MATERIALS AND METHODS: The human prostate cancer cell line 22Rv1 was labeled with ALDEFLUOR reagent and analyzed by flow cytometry. ALDH1(high) and ALDH1(low) cells were isolated and tumorigenicity was evaluated by xenograft transplantation into NOD/SCID mice. Tumor sphere forming ability was evaluated by culturing in a floating condition. Invasion capability was evaluated by the Matrigel™ invasion assay. Gene expression profiling was assessed by microarrays and reverse transcriptase-polymerase chain reaction. RESULTS: ALDH1(high) cells were detected in 6.8% of 22Rv1 cells,which showed significantly higher tumorigenicity than ALDH1(low) cells in NOD/SCID mice (p textless 0.05). Gene expression profiling revealed higher expression of the stem cell related genes PROM1 and NKX3-1 in ALDH1(high) cells than in ALDH1(low) cells. ALDH1(high) cells also showed higher invasive capability and sphere forming capability than ALDH1(low) cells. CONCLUSIONS: Results indicate that cancer stem-like/cancer initiating cells are enriched in the ALDH1(high) population of the prostate cancer cell line 22Rv1. This approach may provide a breakthrough to further clarify prostate cancer stem-like/cancer initiating cells. To our knowledge this is the first report of cancer stem-like/cancer initiating cells of 22Rv1 using the aldehyde dehydrogenase activity assay.
View Publication
文献
Chan CM et al. ( 2012)
Clinical cancer research : an official journal of the American Association for Cancer Research 18 13 3580--3591
Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis.
PURPOSE: There are no effective therapies for patients with poorly differentiated papillary thyroid cancer (PTC) or anaplastic thyroid cancer (ATC),and metastasis to the bone represents a significantly worse prognosis. Src family kinases (SFKs) are overexpressed and activated in numerous tumor types and have emerged as a promising therapeutic target,especially in relation to metastasis. We recently showed that Src is overexpressed and activated in thyroid cancer. We therefore tested whether inhibition of Src with dasatinib (BMS-354825) blocks thyroid cancer growth and metastasis. EXPERIMENTAL DESIGN: The effects of dasatinib on thyroid cancer growth,signaling,cell cycle,and apoptosis were evaluated in vitro. The therapeutic efficacy of dasatinib was further tested in vivo using an orthotopic and a novel experimental metastasis model. Expression and activation of SFKs in thyroid cancer cells was characterized,and selectivity of dasatinib was determined using an Src gatekeeper mutant. RESULTS: Dasatinib treatment inhibited Src signaling,decreased growth,and induced cell-cycle arrest and apoptosis in a subset of thyroid cancer cells. Immunoblotting showed that c-Src and Lyn are expressed in thyroid cancer cells and that c-Src is the predominant SFK activated. Treatment with dasatinib blocked PTC tumor growth in an orthotopic model by more than 90% (P = 0.0014). Adjuvant and posttreatment approaches with dasatinib significantly inhibited metastasis (P = 0.016 and P = 0.004,respectively). CONCLUSION: These data provide the first evidence that Src is a central mediator of thyroid cancer growth and metastasis,indicating that Src inhibitors may have a higher therapeutic efficacy in thyroid cancer,as both antitumor and antimetastatic agents.
View Publication
文献
Vukovic J et al. (MAY 2012)
The Journal of neuroscience : the official journal of the Society for Neuroscience 32 19 6435--43
Microglia modulate hippocampal neural precursor activity in response to exercise and aging.
Exercise has been shown to positively augment adult hippocampal neurogenesis; however,the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here,we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely,microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1,a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor,CX(3)CR1,but not control IgG,dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running,reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity,a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus,and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.
View Publication
文献
Mak SK et al. (JAN 2012)
Stem cells international 2012 140427
Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage.
Efficient in vitro differentiation into specific cell types is more important than ever after the breakthrough in nuclear reprogramming of somatic cells and its potential for disease modeling and drug screening. Key success factors for neuronal differentiation are the yield of desired neuronal marker expression,reproducibility,length,and cost. Three main neuronal differentiation approaches are stromal-induced neuronal differentiation,embryoid body (EB) differentiation,and direct neuronal differentiation. Here,we describe our neurodifferentiation protocol using small molecules that very efficiently promote neural induction in a 5-stage EB protocol from six induced pluripotent stem cells (iPSC) lines from patients with Parkinson's disease and controls. This protocol generates neural precursors using Dorsomorphin and SB431542 and further maturation into dopaminergic neurons by replacing sonic hedgehog with purmorphamine or smoothened agonist. The advantage of this approach is that all patient-specific iPSC lines tested in this study were successfully and consistently coaxed into the neural lineage.
View Publication
文献
Dumitru R et al. (JUN 2012)
Molecular cell 46 5 573--583
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis.
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax,which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly,active Bax was maintained at the Golgi rather than at the mitochondria,thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage,active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly,upon differentiation,Bax was no longer active,and cells were not acutely sensitive to DNA damage. Thus,maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death,likely to prevent the propagation of mutations during the early critical stages of embryonic development.
View Publication
文献
Baudet A et al. (JUN 2012)
Blood 119 26 6255--8
RNAi screen identifies MAPK14 as a druggable suppressor of human hematopoietic stem cell expansion.
We report on a forward RNAi screen in primary human hematopoietic stem and progenitor cells,using pooled lentiviral shRNA libraries deconvoluted by next generation sequencing. We identify MAPK14/p38α as a modulator of ex vivo stem cell proliferation and show that pharmacologic inhibition of p38 dramatically enhances the stem cell activity of cultured umbilical cord blood derived hematopoietic cells. p38 inhibitors should thus be considered in strategies aiming at expanding stem cells for clinical benefit.
View Publication