Yu C-HC-C et al. (JUN 2013)
Cancer research 73 11 3425--3440
miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer.
ALDH1(+)CD44(+) cells are putative tumor-initiating cells (TIC) in head and neck squamous cell carcinomas (HNC). miR-145 regulates tumorigenicity in various cancers but the breadth of its mechanistic contributions and potential therapeutic applications are not completely known. Here,we report that ALDH1(+)CD44(+)-HNC cells express reduced levels of miR145. SPONGE-mediated inhibition of miR-145 (Spg-miR145) was sufficient to drive tumor-initiating characteristics in non-TICs/ALDH1(-)CD44-negative HNC cells. Mechanistic analyses identified SOX9 and ADAM17 as two novel miR145 targets relevant to this process. miR-145 expression repressed TICs in HNC in a manner associated with SOX9 interaction with the ADAM17 promoter,thereby activating ADAM17 expression. Notably,the SOX9/ADAM17 axis dominated the TIC-inducing activity of miR-145. Either miR-145 suppression or ADAM17 overexpression in non-TICs/ALDH1(-)CD44(-)-HNC cells increased expression and secretion of interleukin (IL)-6 and soluble-IL-6 receptor (sIL-6R). Conversely,conditioned medium from Spg-miR145-transfected non-TICs/ALDH1(-)CD44(-)-HNC cells was sufficient to confer tumor-initiating properties in non-TICs/ALDH1(-)CD44(-)-HNC and this effect could be abrogated by an IL-6-neutralizing antibody. We found that curcumin administration increased miR-145 promoter activity,thereby decreasing SOX9/ADAM17 expression and eliminating TICs in HNC cell populations. Delivery of lentivral-miR145 or orally administered curcumin blocked tumor progression in HNC-TICs in murine xenotransplant assays. Finally,immunohistochemical analyses of patient specimens confirmed that an miR-145(low)/SOX9(high)/ADAM17(high) phenotype correlated with poor survival. Collectively,our results show how miR-145 targets the SOX9/ADAM17 axis to regulate TIC properties in HNC,and how altering this pathway may partly explain the anticancer effects of curcumin. By inhibiting IL-6 and sIL-6R as downstream effector cytokines in this pathway,miR-145 seems to suppress a paracrine signaling pathway in the tumor microenvironment that is vital to maintain TICs in HNC.
View Publication
文献
Martin S et al. (MAR 2013)
PLoS ONE 8 3 e60152
Inhibition of PIKfyve by YM-201636 Dysregulates Autophagy and Leads to Apoptosis-Independent Neuronal Cell Death
The lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P 2),synthesised by PIKfyve,regulates a number of intracellular membrane trafficking pathways. Genetic alteration of the PIKfyve complex,leading to even a mild reduction in PtdIns(3,5)P 2,results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that selectively inhibiting PIKfyve activity,using YM-201636,significantly reduces the survival of primary mouse hippocampal neurons in culture. YM-201636 treatment promoted vacuolation of endolysosomal membranes followed by apoptosis-independent cell death. Many vacuoles contained intravacuolar membranes and inclusions reminiscent of autolysosomes. Accordingly,YM-201636 treatment increased the level of the autophagosomal marker protein LC3-II,an effect that was potentiated by inhibition of lysosomal proteases,suggesting that alterations in autophagy could be a contributing factor to neuronal cell death.
View Publication
文献
Cordeiro JM et al. (JUL 2013)
Journal of Molecular and Cellular Cardiology 60 1 36--46
Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes
Background: The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method: Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4,Nanog,Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4,KChIP2 and Kv4.3 were quantified from BCs. Results: BCs exhibited spontaneous beating (60.5??2.6bpm) and maximum-diastolic-potential (MDP) of 67.8??0.8mV (n=155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7??1.9 pA/pF at +40mV; n=14). Recovery of Ito from inactivation (at -80mV) showed slow kinetics (??1=200??110ms (12%) and ??2=2380??240ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion: The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. ?? 2013 Elsevier Ltd.
View Publication
文献
Foti SB et al. (OCT 2013)
International Journal of Developmental Neuroscience 31 6 434--447
HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain
The mammalian central nervous system (CNS) undergoes significant expansion postnatally,producing astrocytes,oligodendrocytes and inhibitory neurons to modulate the activity of neural circuits. This is coincident in humans with the emergence of pediatric epilepsy,a condition commonly treated with valproate/valproic acid (VPA),a potent inhibitor of histone deacetylases (HDACs). The sequential activity of specific HDACs,however,may be essential for the differentiation of distinct subpopulations of neurons and glia. Here,we show that different subsets of CNS neural stem cells (NSCs) and progenitors switch expression of HDAC1 and HDAC2 as they commit to a neurogenic lineage in the subventricular zone (SVZ) and dentate gyrus (DG). The administration of VPA for only one week from P7-P14,combined with sequential injections of thymidine analogs reveals that VPA stimulates a significant and differential decrease in the production and differentiation of progeny of NSCs in the DG,rostral migratory stream (RMS),and olfactory bulb (OB). Cross-fostering VPA-treated mice revealed,however,that a postnatal failure to thrive induced by VPA treatment had a greater effect on DG neurogenesis than VPA action directly. By one month after VPA,OB interneuron genesis was significantly and differentially reduced in both periglomerular and granule neurons. Using neurosphere assays to test if VPA directly regulates NSC activity,we found that short term treatment with VPA in vivo reduced neurosphere numbers and size,a phenotype that was also obtained in neurospheres from control mice treated with VPA and an alternative HDAC inhibitor,Trichostatin A (TSA) at 0 and 3 days in vitro (DIV). Collectively,these data show that clinically used HDAC inhibitors like VPA and TSA can perturb postnatal neurogenesis; and their use should be carefully considered,especially in individuals whose brains are actively undergoing key postnatal time windows of development.
View Publication
文献
Kumagai H et al. (MAY 2013)
Biochemical and Biophysical Research Communications 434 4 710--716
Identification of small molecules that promote human embryonic stem cell self-renewal
Human embryonic stem cells (hESCs) and induced pluripotent cells have the potential to provide an unlimited source of tissues for regenerative medicine. For this purpose,development of defined/xeno-free culture systems under feeder-free conditions is essential for the expansion of hESCs. Most defined/xeno-free media for the culture of hESCs contain basic fibroblast growth factor (bFGF). Therefore,bFGF is thought to have an almost essential role for the expansion of hESCs in an undifferentiated state. Here,we report identification of small molecules,some of which were neurotransmitter antagonists (trimipramine and ethopropazine),which promote long-term hESC self-renewal without bFGF in the medium. The hESCs maintained high expression levels of pluripotency markers,had a normal karyotype after 20 passages,and could differentiate into all three germ layers. ?? 2013 Elsevier Inc.
View Publication
文献
Lian X et al. (MAR 2013)
PLoS ONE 8 3 e60016
A Small Molecule Inhibitor of Src Family Kinases Promotes Simple Epithelial Differentiation of Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) provide unprecedented opportunities to study the earliest stages of human development in vitro and have the potential to provide unlimited new sources of cells for regenerative medicine. Although previous studies have reported cytokeratin 14+/p63+ keratinocyte generation from hPSCs,the multipotent progenitors of epithelial lineages have not been described and the developmental pathways regulating epithelial commitment remain largely unknown. Here we report membrane localization of β-catenin during retinoic acid (RA)--induced epithelial differentiation. In addition hPSC treatment with the Src family kinase inhibitor SU6656 modulated β-catenin localization and produced an enriched population of simple epithelial cells under defined culture conditions. SU6656 strongly upregulated expression of cytokeratins 18 and 8 (K18/K8),which are expressed in simple epithelial cells,while repressing expression of the pluripotency gene Oct4. This homogeneous population of K18+K8+Oct4- simple epithelial precursor cells can further differentiate into cells expressing keratinocyte or corneal-specific markers. These enriched hPSC-derived simple epithelial cells may provide a ready source for development and toxicology cell models and may serve as a progenitor for epithelial cell transplantation applications.
View Publication
文献
Pineda JR et al. (APR 2013)
EMBO Molecular Medicine 5 4 548--562
Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain
Neurogenesis decreases during aging and following cranial radiotherapy,causing a progressive cognitive decline that is currently untreatable. However,functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover,we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures,irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly,the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice,prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
View Publication
文献
Son MYMJMY et al. (JUN 2013)
Stem Cells 31 6 1121--1135
Nicotinamide overcomes pluripotency deficits and reprogramming barriers
Crosstalk between intracellular signaling pathways has been extensively studied to understand the pluripotency of human pluripotent stem cells (hPSCs),including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs); however,the contribution of NAD(+) -dependent pathways remains largely unknown. Here,we show that NAD(+) depletion by FK866 (a potent inhibitor of NAD(+) biosynthesis) was fatal in hPSCs,particularly when deriving pluripotent cells from somatic cells and maintaining pluripotency. NAD and its precursors (nicotinamide [NAM] and nicotinic acid) fully replenished the NAD(+) depletion by FK866 in hPSCs. However,only NAM effectively enhanced the reprogramming efficiency and kinetics of hiPSC generation and was also significantly advantageous for the maintenance of undifferentiated hPSCs. Our molecular and functional studies reveal that NAM lowers the barriers to reprogramming by accelerating cell proliferation and protecting cells from apoptosis and senescence by alleviating oxidative stress,reactive oxygen species accumulation,and subsequent mitochondrial membrane potential collapse. We provide evidence that the positive effects of NAM (occurring at concentrations well above the physiological range) on pluripotency control are molecularly associated with the repression of p53,p21,and p16. Our findings establish that adequate intracellular NAD(+) content is crucial for pluripotency; the distinct effects of NAM on pluripotency may be dependent not only on its metabolic advantage as a NAD(+) precursor but also on the ability of NAM to enhance resistance to cellular stress.
View Publication
文献
Liang P et al. (APR 2013)
Circulation 127 16 1677--1691
Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity
BACKGROUND: Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds.backslashnbackslashnMETHODS AND RESULTS: Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome,familial hypertrophic cardiomyopathy,and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs,but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations.backslashnbackslashnCONCLUSIONS: We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects,long QT syndrome,hypertrophic cardiomyopathy,and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.
View Publication
文献
Hewings DS et al. (APR 2013)
Journal of medicinal chemistry 56 8 3217--27
Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands.
The bromodomain protein module,which binds to acetylated lysine,is emerging as an important epigenetic therapeutic target. We report the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency. X-ray crystal structures of the most potent compounds reveal key interactions required for high affinity at BRD4(1). Cellular studies demonstrate that the phenol and acetate derivatives of the lead compounds showed strong antiproliferative effects on MV4;11 acute myeloid leukemia cells,as shown for other BET bromodomain inhibitors and genetic BRD4 knockdown,whereas the reported compounds showed no general cytotoxicity in other cancer cell lines tested.
View Publication
文献
Wu H et al. (SEP 2013)
Journal of cellular biochemistry 114 9 1969--77
Regulation of selective PPARγ modulators in the differentiation of osteoclasts.
Diabetes is the most common chronic disease in the world and causes complications with many diseases,such as heart disease and osteoporosis. Osteoporosis is a systemic bone disease characterized by imbalance in bone resorption and bone formation. Osteoclast is type of bone cell that functions in bone resorption and plays a critical role in bone remodeling. Rosiglitazone and pioglitazone,which belong to Thiazolidinediones(TZDs),are commonly used antidiabetic drugs. As PPARγ full agonists,they can activate PPARγ in a ligand-dependent way. Recent studies indicate that these PPARγ full agonists have some side effects,such as weight gain and bone loss,which may increase the risk of osteoporosis. In contrast,selective PPARγ Modulators (SPPARγMs) are novel PPARγ ligands that can activate PPARγ in different ways and lead to distinct downstream genes. Mice bone marrow cells were stimulated with recombinant mouse RANKL and M-CSF to generate osteoclasts. To determine the effect on osteoclasts formation,PPARγ ligands (Rosiglitazone,Fmoc-L-Leu,and Telmisartan) were added at the beginning of the culture. Rosiglitazone significantly increased the differentiation of multinucleated osteoclasts,while osteoclasts formation triggered by SPPARγMs was much less than that displayed by rosiglitazone. We found that the enhancement of PPARγ ligands may be associated with TRAF6 and downstream ERK signal pathway. We also demonstrated osteoclasts show characteristic M2 phenotype and can be further promoted by PPARγ ligands,especially rosiglitazone. In conclusion,reduced osteoclasts differentiation characteristic of SPPARγMs highlights SPPARγMs potential as therapeutic targets in diabetes,versus traditional antidiabetic drugs.
View Publication
文献
Al-Ali H et al. (MAY 2013)
ACS Chemical Biology 8 5 1027--1036
Chemical Interrogation of the Neuronal Kinome Using a Primary Cell-Based Screening Assay
A fundamental impediment to functional recovery from spinal cord injury (SCI) and traumatic brain injury is the lack of sufficient axonal regeneration in the adult central nervous system. There is thus a need to develop agents that can stimulate axon growth to re-establish severed connections. Given the critical role played by protein kinases in regulating axon growth and the potential for pharmacological intervention,small molecule protein kinase inhibitors present a promising therapeutic strategy. Here,we report a robust cell-based phenotypic assay,utilizing primary rat hippocampal neurons,for identifying small molecule kinase inhibitors that promote neurite growth. The assay is highly reliable and suitable for medium-throughput screening,as indicated by its Z'-factor of 0.73. A focused structurally diverse library of protein kinase inhibitors was screened,revealing several compound groups with the ability to strongly and consistently promote neurite growth. The best performing bioassay hit robustly and consistently promoted axon growth in a postnatal cortical slice culture assay. This study can serve as a jumping-off point for structure activity relationship (SAR) and other drug discovery approaches toward the development of drugs for treating SCI and related neurological pathologies.
View Publication