Lee Y-KK et al. (JAN 2016)
International journal of cardiology 203 964--971
Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA.
BACKGROUND Friedreich's ataxia (FRDA),a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy,is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog,idebenone (IDE) or the iron chelator,deferiprone (DFP),which are both under clinical trial. RESULTS DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 $\$ and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 $\$ With regard to cardiac electrical-contraction (EC) coupling function,decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein,succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition,iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events,cardiac electrical-coupling during contraction.
View Publication
文献
Begum AN et al. (NOV 2015)
Stem Cell Research 15 3 731--741
Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres
Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation,but they often clump in culture,which has always represented a challenge for neurodifferentiation. In this study,we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM) with 10% CO2,which doubled the expression of the NESTIN,PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore,an additional step (AdSTEP) was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the neurosphederm". The large neural tube-type rosette (NTTR) structure formed from the neurosphederm�
View Publication
文献
Ja KPMM et al. (FEB 2016)
Journal of cellular and molecular medicine 20 2 323--332
iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium.
We investigate the effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived progenitors and cardiomyocytes into acutely infarcted myocardium in severe combined immune deficiency mice. A total of 2 × 10(5) progenitors,cardiomyocytes or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Myocardial function was assessed at 2-week and 4-week post-infarction by using echocardiography and pressure-volume catheterization. Early myocardial remodelling was observed at 2-week with echocardiography derived stroke volume (SV) in saline (20.45 ± 7.36 $\$,P textless 0.05) and cardiomyocyte (19.52 ± 3.97 $\$,P textless 0.05) groups,but not in progenitor group (25.65 ± 3.61 $\$),significantly deteriorated as compared to sham control group (28.41 ± 4.41 $\$). Consistently,pressure-volume haemodynamic measurements showed worsening chamber dilation in saline (EDV: 23.24 ± 5.01 $\$,P textless 0.05; ESV: 17.08 ± 5.82 $\$,P textless 0.05) and cardiomyocyte (EDV: 26.45 ± 5.69 $\$,P textless 0.05; ESV: 18.03 ± 6.58 $\$,P textless 0.05) groups by 4-week post-infarction as compared to control (EDV: 15.26 ± 2.96 $\$; ESV: 8.41 ± 2.94 $\$). In contrast,cardiac progenitors (EDV: 20.09 ± 7.76 $\$; ESV: 13.98 ± 6.74 $\$) persistently protected chamber geometry against negative cardiac remodelling. Similarly,as compared to sham control (54.64 ± 11.37%),LV ejection fraction was preserved in progenitor group from 2-(38.68 ± 7.34%) to 4-week (39.56 ± 13.26%) while cardiomyocyte (36.52 ± 11.39%,P textless 0.05) and saline (35.34 ± 11.86%,P textless 0.05) groups deteriorated early at 2-week. Improvements of myocardial function in the progenitor group corresponded to increased vascularization (16.12 ± 1.49/mm(2) to 25.48 ± 2.08/mm(2) myocardial tissue,P textless 0.05) and coincided with augmented networking of cardiac telocytes in the interstitial space of infarcted zone.
View Publication
文献
Baker RL et al. (JAN 2016)
Journal of Immunology 196 1 39--43
Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes.
T cells reactive to β cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse,we recently identified the β cell secretory granule protein,chromogranin A (ChgA),as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis,we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast,in NOD.ChgA(+/+) mice,a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice.
View Publication
The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming.
Long intergenic noncoding RNAs (lincRNAs) are derived from thousands of loci in mammalian genomes and are frequently enriched in transposable elements (TEs). Although families of TE-derived lincRNAs have recently been implicated in the regulation of pluripotency,little is known of the specific functions of individual family members. Here we characterize three new individual TE-derived human lincRNAs,human pluripotency-associated transcripts 2,3 and 5 (HPAT2,HPAT3 and HPAT5). Loss-of-function experiments indicate that HPAT2,HPAT3 and HPAT5 function in preimplantation embryo development to modulate the acquisition of pluripotency and the formation of the inner cell mass. CRISPR-mediated disruption of the genes for these lincRNAs in pluripotent stem cells,followed by whole-transcriptome analysis,identifies HPAT5 as a key component of the pluripotency network. Protein binding and reporter-based assays further demonstrate that HPAT5 interacts with the let-7 microRNA family. Our results indicate that unique individual members of large primate-specific lincRNA families modulate gene expression during development and differentiation to reinforce cell fate.
View Publication
文献
Kaini RR et al. (JAN 2016)
Tissue engineering. Part C,Methods
Recombinant Xeno-Free Vitronectin Supports Self-Renewal and Pluripotency in Protein-Induced Pluripotent Stem Cells.
Patient safety is a major concern in the application of induced pluripotent stem cells (iPSCs) in cell-based therapy. Efforts are being made to reprogram,maintain,and differentiate iPSCs in defined conditions to provide a safe source of stem cells for regenerative medicine. Recently,human fibroblasts were successfully reprogrammed into pluripotent stem cells using four recombinant proteins (OCT4,c-Myc,KLF4,and SOX2) fused with a cell-penetrating peptide (9R). These protein-induced pluripotent stem cells (piPSCs) are maintained and propagated on a feeder layer of mouse embryonic fibroblasts. Use of animal-derived products in maintenance and differentiation of iPSCs poses risks of zoonotic disease transmission and immune rejection when transplanted into humans. To avoid potential incorporation of xenogenic products,we cultured piPSCs on recombinant human matrix proteins. We then tested whether recombinant human matrix proteins can support self-renewal and pluripotency of piPSCs. After long-term culture on recombinant human vitronectin in xeno-free conditions,piPSCs retained the expression of pluripotent markers. The pluripotency of these cells was further evaluated by differentiating toward ectoderm,mesoderm,and endoderm lineages in vitro. In conclusion,recombinant human vitronectin can support the long-term culture and maintain the stemness of piPSCs in defined nonxenogenic conditions.
View Publication
文献
Baarine M et al. (NOV 2015)
PLoS ONE 10 11 e0143238
Functional characterization of IPSC-derived brain cells as a model for X-linked adrenoleukodystrophy
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast),neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA,a hallmark" of X-ALD�
View Publication
文献
Sheng Y et al. (JUL 2015)
Acta pharmaceutica Sinica. B 5 4 330--6
Our previous work found that DMH1 (4-[6-(4-isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl]quinoline) was a novel autophagy inhibitor. Here,we aimed to investigate the effects of DMH1 on chemotherapeutic drug-induced autophagy as well as the efficacy of chemotherapeutic drugs in different cancer cells. We found that DMH1 inhibited tamoxifen- and cispcis-diaminedichloroplatinum (II) (CDDP)-induced autophagy responses in MCF-7 and HeLa cells,and potentiated the anti-tumor activity of tamoxifen and CDDP for both cells. DMH1 inhibited 5-fluorouracil (5-FU)-induced autophagy responses in MCF-7 and HeLa cells,but did not affect the anti-tumor activity of 5-FU for these two cell lines. DMH1 itself did not induce cell death in MCF-7 and HeLa cells,but inhibited the proliferation of these cells. In conclusion,DMH1 inhibits chemotherapeutic drug-induced autophagy response and the enhancement of efficacy of chemotherapeutic drugs by DMH1 is dependent on the cell sensitivity to drugs.
View Publication
文献
Zhang X et al. (JAN 2016)
Carbohydrate Polymers 136 1061--1064
Peptide-conjugated hyaluronic acid surface for the culture of human induced pluripotent stem cells under defined conditions
Hyaluronic acid (HA) has been cross-linked to form hydrogel for potential applications in the self-renewal and differentiation of human pluripotent stem cells (hPSCs) for years. However,HA hydrogel with improved residence time and mechanical integrity that allows the survival of hPSCs under defined conditions is still much needed for clinical applications. In this study,HA was modified with methacrylate functional groups (MeHA) and cross-linked by photo-crosslinking method. After subsequent conjugation with adhesive peptide,these MeHA surfaces demonstrated performance in facilitating human induced pluripotent stem cells (hiPSCs) proliferation,and good pluripotency maintenance of hiPSCs under defined conditions. Moreover,MeHA films on glass-slides exhibited long residence time and mechanical stability throughout hiPSC culture. Our photo-crosslinkable MeHA possesses great value in accelerating the application of HA hydrogel in hiPSCs proliferation and differentiation with the conjugation of adhesive peptides.
View Publication
文献
Alqahtani H et al. (FEB 2016)
Cellular signalling 28 2 42--50
DDX17 (P72), a Sox2 binding partner, promotes stem-like features conferred by Sox2 in a small cell population in estrogen receptor-positive breast cancer.
We have previously demonstrated the existence of two phenotypically distinct cell subsets in estrogen receptor (ER)-positive breast cancer (BC) based on their differential response to a Sox2 reporter (SRR2),with reporter responsive (RR) cells being more tumorigenic and stem-like than reporter unresponsive (RU) cells. To delineate the molecular mechanisms underlying this phenotypic dichotomy,we tested our hypothesis that Sox2,which is a key regulator of the RR phenotype,is under the control of its binding partners. In this study,we focused on DDX17,known to be a transcription co-activator and found to be a Sox2 binding partner by liquid chromatography-mass spectrometry. Using immunoprecipitation,we confirmed the binding between DDX17 and Sox2,although this interaction was largely restricted to RR cells. While DDX17 was found in both the cytoplasm and nuclei in RU cells,it is confined to the nuclei in RR cells. siRNA knockdown of DDX17 in RR cells substantially decreased the Sox2-SRR2 binding and significantly decreased the SRR2 reporter activity without affecting the protein level of Sox2. Using ChIP-PCR,DDX17 knockdown also significantly decreased the binding of Sox2 to genomic SRR2,as well as 3 of its specific gene targets including MUC15,CCND1 and CD133. Correlating with these findings,siRNA knockdown of DDX17 significantly reduced soft agar colony formation and mammosphere formation in RR cells but not RU cells. To conclude,DDX17 is a Sox2-binding protein in ER-positive BC. In RR but not RU cells,DDX17 enhances the tumorigenic and stem-like features of Sox2 by promoting its binding to its target genes.
View Publication
文献
Chen RJ et al. (NOV 2015)
PloS one 10 11 e0142554
Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States.
Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report,we employ electron,immunofluorescence microscopy,and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 $$g/$$g proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 $$g/$$g proteins) reported in human cancer cell lines. Moreover,we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states,similar to those naïve-like hPSCs,with increased glycogen synthesis. Furthermore,we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus,our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions.
View Publication
文献
Mashimo Y and Kamei K-II ( 2015)
1346 85--98
Microfluidic Image Cytometry for Single-Cell Phenotyping of Human Pluripotent Stem Cells
A microfluidic human pluripotent stem cell (hPSC) array has been developed for robust and reproducible hPSC culture methods to assess chemically defined serum- and feeder-free culture conditions. This microfluidic platform,combined with image cytometry,enables the systematic analysis of multiple simultaneously detected marker expression in individual cells,for screening of various chemically defined media across hPSC lines,and the study of phenotypic responses.
View Publication