Xia N et al. (FEB 2016)
Scientific Reports 6 20270
Transcriptional comparison of human induced and primary midbrain dopaminergic neurons
Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson's disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson's Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression,especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies,including in vitro modeling of PD. However,further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs.
View Publication
文献
Wang J et al. (DEC 2016)
Molecular brain 9 1 12
Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway.
BACKGROUND Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study,we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism. RESULTS EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production,apoptosis,and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium,and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K). CONCLUSIONS Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury,via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.
View Publication
文献
Roybal KT et al. (FEB 2016)
Cell 164 4 770--9
Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits.
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach,however,is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here,we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT."
View Publication
文献
Llibre A et al. (MAR 2016)
Journal of Immunology 196 5 2085--94
LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation.
Germinal centers (GCs) are microanatomical structures critical for the development of high-affinity Abs and B cell memory. They are organized into two zones,light and dark,with coordinated roles,controlled by local signaling. The innate lectin-like transcript 1 (LLT1) is known to be expressed on B cells,but its functional role in the GC reaction has not been explored. In this study,we report high expression of LLT1 on GC-associated B cells,early plasmablasts,and GC-derived lymphomas. LLT1 expression was readily induced via BCR,CD40,and CpG stimulation on B cells. Unexpectedly,we found high expression of the LLT1 ligand,CD161,on follicular dendritic cells. Triggering of LLT1 supported B cell activation,CD83 upregulation,and CXCR4 downregulation. Overall,these data suggest that LLT1-CD161 interactions play a novel and important role in B cell maturation within the GC in humans.
View Publication
文献
Kerscher P et al. (MAR 2016)
Biomaterials 83 383--395
Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues
Human engineered heart tissues have potential to revolutionize cardiac development research,drug-testing,and treatment of heart disease; however,implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment,we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward,ontomimetic approach,imitating the process of development,requires only a single cell-handling step,provides reproducible results for a range of tested geometries and size scales,and overcomes inherent limitations in cell maintenance and maturation,while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation,mimicking heart development,and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.
View Publication
文献
Cao Y et al. (MAR 2016)
Journal of Immunology 196 5 2075--84
Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production.
Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target Ag and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature,Ag-experienced B cells rely on the action of Th cells to produce these pathogenic Abs. The phenotype of the MG Ag-reactive T cell compartment is not well defined; thus,we sought to determine whether such cells exhibit both a proinflammatory and a pathogenic phenotype. A novel T cell library assay that affords multiparameter interrogation of rare Ag-reactive CD4(+) T cells was applied. Proliferation and cytokine production in response to both AChR and control Ags were measured from 3120 T cell libraries derived from 11 MG patients and paired healthy control subjects. The frequency of CCR6(+) memory T cells from MG patients proliferating in response to AChR-derived peptides was significantly higher than that of healthy control subjects. Production of both IFN-γ and IL-17,in response to AChR,was also restricted to the CCR6(+) memory T cell compartment in the MG cohort,indicating a proinflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression,indicating a proinflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells,because the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations.
View Publication
文献
C. C. Goh et al. (MAR 2016)
Journal of Immunology 196 5 2283--92
Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-$\gamma$ Production by Altering Cellular Metabolism via Arginase-1.
The hepatitis C virus (HCV) infects ∼200 million people worldwide. The majority of infected individuals develop persistent infection,resulting in chronic inflammation and liver disease,including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms,including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular,IFN-$\gamma$ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However,NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study,we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-$\gamma$,with no effect on granzyme B production or cell viability. Importantly,this suppression of NK cell-derived IFN-$\gamma$ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-$\gamma$ production was reversed by l-arginine supplementation,consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses,further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.
View Publication
文献
Li H-L et al. (JAN 2016)
Cell death & disease 7 1 e2078
miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner.
Pluripotency makes human pluripotent stem cells (hPSCs) promising for regenerative medicine,but the teratoma formation has been considered to be a major obstacle for their clinical applications. Here,we determined that the downregulation of miR-302 suppresses the teratoma formation,hampers the self-renewal and pluripotency,and promotes hPSC differentiation. The underlying mechanism is that the high endogenous expression of miR-302 suppresses the AKT1 expression by directly targeting its 3'UTR and subsequently maintains the pluripotent factor OCT4 at high level. Our findings reveal that miR-302 regulates OCT4 by suppressing AKT1,which provides hPSCs two characteristics related to their potential for clinical applications: the benefit of pluripotency and the hindrance of teratoma formation. More importantly,we demonstrate that miR-302 upregulation cannot lead OCT4 negative human adult mesenchymal stem cells (hMSCs) to acquire the teratoma formation in vivo. Whether miR-302 upregulation can drive hMSCs to acquire a higher differentiation potential is worthy of deep investigation.
View Publication
文献
Vegas AJ et al. (MAR 2016)
Nature medicine 22 3 306--311
Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice.
The transplantation of glucose-responsive,insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically,but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-$\$),which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However,clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic,immunocompetent animal model using human SC-$\$ SC-$\$ were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin,which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
View Publication
文献
Wang J et al. (FEB 2016)
Nature protocols 11 2 327--46
Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression.
The ability to derive and stably maintain ground-state human pluripotent stem cells (hPSCs) that resemble the cells seen in vivo in the inner cell mass has the potential to be an invaluable tool for researchers developing stem cell-based therapies. To date,derivation of human naive-like pluripotent stem cell lines has been limited to a small number of lineages,and their long-term culturing remains problematic. We describe a protocol for genetic and phenotypic tagging,selecting and maintaining naive-like hPSCs. We tag hPSCs by GFP,expressed by the long terminal repeat (LTR7) of HERVH endogenous retrovirus. This simple and efficient protocol has been reproduced with multiple hPSC lines,including embryonic and induced pluripotent stem cells,and it takes ∼6 weeks. By using the reporter,homogeneous hPSC cultures can be derived,characterized and maintained for the long term by repeated re-sorting and re-plating steps. The HERVH-expressing cells have a similar,but nonidentical,expression pattern to other naive-like cells,suggesting that alternative pluripotent states might exist.
View Publication
文献
Weisel FJ et al. (JAN 2016)
Immunity 44 1 116--30
A Temporal Switch in the Germinal Center Determines Differential Output of Memory B and Plasma Cells.
There is little insight into or agreement about the signals that control differentiation of memory B cells (MBCs) and long-lived plasma cells (LLPCs). By performing BrdU pulse-labeling studies,we found that MBC formation preceded the formation of LLPCs in an adoptive transfer immunization system,which allowed for a synchronized Ag-specific response with homogeneous Ag-receptor,yet at natural precursor frequencies. We confirmed these observations in wild-type (WT) mice and extended them with germinal center (GC) disruption experiments and variable region gene sequencing. We thus show that the GC response undergoes a temporal switch in its output as it matures,revealing that the reaction engenders both MBC subsets with different immune effector function and,ultimately,LLPCs at largely separate points in time. These data demonstrate the kinetics of the formation of the cells that provide stable humoral immunity and therefore have implications for autoimmunity,for vaccine development,and for understanding long-term pathogen resistance.
View Publication
文献
Fuller HR et al. (JAN 2015)
Frontiers in cellular neuroscience 9 January 506
Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development.
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons,and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts,whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably,UBA1 was significantly decreased in SMA motor neurons,supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons,including beta III-tubulin and UCHL1,were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts,highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons,and for the identification of novel biomarker and therapeutic targets for SMA.
View Publication