T. Ito-Kureha et al. (aug 2022)
Nature immunology 23 8 1208--1221
The function of Wtap in N6-adenosine methylation of mRNAs controls T cell receptor signaling and survival of T cells.
T cell antigen-receptor (TCR) signaling controls the development,activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing,translation and stability of transcripts. In the present study,we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes,control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut ROR?t+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.
View Publication
文献
M. Benguigui et al. ( 2022)
Frontiers in immunology 13 903591
Myeloid-derived suppressor cells (MDSCs) are known to promote tumor growth in part by their immunosuppressive activities and their angiogenesis support. It has been shown that Bv8 blockade inhibits the recruitment of MDSCs to tumors,thereby delaying tumor relapse associated with resistance to antiangiogenic therapy. However,the impact of Bv8 blockade on tumors resistant to the new immunotherapy drugs based on the blockade of immune checkpoints has not been investigated. Here,we demonstrate that granulocytic-MDSCs (G-MDSCs) are enriched in anti-PD1 resistant tumors. Importantly,resistance to anti-PD1 monotherapy is reversed upon switching to a combined regimen comprised of anti-Bv8 and anti-PD1 antibodies. This effect is associated with a decreased level of G-MDSCs and enrichment of active cytotoxic T cells in tumors. The blockade of anti-Bv8 has shown efficacy also in hyperprogressive phenotype of anti-PD1-treated tumors. In vitro,anti-Bv8 antibodies directly inhibit MDSC-mediated immunosuppression,as evidenced by enhanced tumor cell killing activity of cytotoxic T cells. Lastly,we show that anti-Bv8-treated MDSCs secrete proteins associated with effector immune cell function and T cell activity. Overall,we demonstrate that Bv8 blockade inhibits the immunosuppressive function of MDSCs,thereby enhancing anti-tumor activity of cytotoxic T cells and sensitizing anti-PD1 resistant tumors. Our findings suggest that combining Bv8 blockade with anti-PD1 therapy can be used as a strategy for overcoming therapy resistance.
View Publication
文献
P. Peng et al. ( 2022)
Frontiers in immunology 13 944115
Th1-Dominant CD4+ T Cells Orchestrate Endogenous Systematic Antitumor Immune Memory After Cryo-Thermal Therapy.
Recent studies suggest that highly activated,polyfunctional CD4+ T cells are incredibly effective in strengthening and sustaining overall host antitumor immunity,promoting tumor-specific CD4+ T-cell responses and effectively enhancing antitumor immunity by immunotherapy. Previously,we developed a novel cryo-thermal therapy for local tumor ablation and achieved long-term survival rates in several tumor models. It was discovered that cryo-thermal therapy remodeled the tumor microenvironment and induced an antigen-specific CD4+ T-cell response,which mediated stronger antitumor immunity in vivo. In this study,the phenotype of bulk T cells in spleen was analyzed by flow cytometry after cryo-thermal therapy and both CD4+ Th1 and CD8+ CTL were activated. In addition,by using T-cell depletion,isolation,and adoptive T-cell therapy,it was found that cryo-thermal therapy induced Th1-dominant CD4+ T cells that directly inhibited the growth of tumor cells,promoted the maturation of MDSCs via CD4+ T-cell-derived IFN-? and enhanced the cytotoxic effector function of NK cells and CD8+ T cells,and promoted the maturation of APCs via cell-cell contact and CD4+ T-cell-derived IFN-?. Considering the multiple roles of cryo-thermal-induced Th1-dominant CD4+ T cells in augmenting antitumor immune memory,we suggest that local cryo-thermal therapy is an attractive thermo-immunotherapy strategy to harness host antitumor immunity and has great potential for clinical application.
View Publication
文献
C. Skejoe et al. ( 2022)
American journal of clinical and experimental immunology 11 3 34--44
T-cell immunoglobulin and mucin domain 3 is upregulated in rheumatoid arthritis, but insufficient in controlling inflammation.
OBJECTIVES Rheumatoid arthritis (RA) is a chronic autoimmune disease,that involves both pro- and anti-inflammatory mechanisms. The purpose of the present study is to investigate T-cell immunoglobulin and mucin domain 3 (Tim-3) in RA. METHODS Plasma levels of soluble (s) Tim-3 in early RA (n=98),were followed,to evaluate association with treatment and disease activity,acquired from a prospective collected biobank (clinicaltrials.gov (NCT00660647)). We also investigate the influence of Tim-3 on spontaneous cytokine production in synovial fluid mononuclear cells (SFMC) from RA patients after addition of neutralizing anti-Tim-3's antibodies,either alone or in combination with neutralizing anti-Programmed Cell death protein 1 (PD-1) antibodies. RESULTS Long-time stimulated CD4 T-cells expressed high levels of Tim-3,but tended to decrease their PD-1 expression. Tim-3 expression was exclusively seen co-expressed with PD-1 by CD3,CD4,CD45RO positive cells in the inflamed RA joint. Addition of neutralizing Tim-3 antibodies increased the secretion of IFN$\gamma$ and MCP-1,in SFMC cultures from RA. Whereas neutralizing anti-PD-1 antibodies showed a broader impact on cytokine production. Finally,we observed that soluble Tim-3 is increased in plasma and is associated with disease activity in early RA. CONCLUSION Taken together,our findings indicate disease-suppressive functions of Tim-3 in RA.
View Publication
文献
Z. Wang et al. (nov 2022)
Laboratory investigation; a journal of technical methods and pathology 102 11 1268--1279
The N6-methyladenosine writer WTAP contributes to the induction of immune tolerance post kidney transplantation by targeting regulatory T cells.
N6-methyladenosine (m6A) modification is involved in diverse immunoregulation,while the relationship between m6A modification and immune tolerance post kidney transplantation remains unclear. Expression of Wilms tumor 1-associating protein (WTAP),an m6A writer,was firstly detected in tolerant kidney transplant recipients (TOL). Then the role of WTAP on regulatory T (Treg) cell differentiation and function in CD4+ T cells from kidney transplant recipients with immune rejection (IR) was investigated. The potential target of WTAP and effect of WTAP on immune tolerance in vivo were subsequently verified. WTAP was upregulated in CD4+ T cells of TOL and positively correlated with Treg cell proportion. In vitro,WTAP overexpression promoted Treg cell differentiation and enhanced Treg cell-mediated suppression toward na?ve T cells. Forkhead box other 1 (Foxo1) was identified as a target of WTAP. WTAP enhanced m6A modification of Foxo1 mRNA in coding sequence (CDS) region,leading to up-regulation of Foxo1. Overexpression of m6A demethylase removed the effect of WTAP overexpression,while Foxo1 overexpression reversed these effects. WTAP overexpression alleviated allograft rejection in model mice,as evidenced by reduced inflammatory response and increased Treg population. Our study suggests that WTAP plays a positive role in induction of immune tolerance post kidney transplant by promoting Treg cell differentiation and function. leading to up-regulation of Foxo1. Overexpression of m6A demethylase removed the effect of WTAP overexpression while Foxo1 overexpression reversed these effects. WTAP overexpression alleviated allograft rejection in model mice as evidenced by reduced inflammatory response and increased Treg population. Our study suggests that WTAP plays a positive role in induction of immune tolerance post kidney transplant by promoting Treg cell differentiation and function."
View Publication
文献
J. Bruminhent et al. (nov 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 11 2651--2660
An additional dose of viral vector COVID-19 vaccine and mRNA COVID-19 vaccine in kidney transplant recipients: A randomized controlled trial (CVIM 4 study).
Immunogenicity following an additional dose of Coronavirus disease 2019 (COVID-19) vaccine was investigated in an extended primary series among kidney transplant (KT) recipients. Eighty-five KT participants were randomized to receive either an mRNA (M group; n =??43) or viral vector (V group; n =??42) vaccine. Among them,62% were male,with a median (IQR) age of 50 (43-59) years and post-transplantation duration of 46 (26-82) months. At 2??weeks post-additional dose,there was no difference in the seroconversion rate between the M and V groups (70% vs. 65%,p =??.63). A median (IQR) of anti-RBD antibody level was not statistically different between the M group compared with the V group (51.8 [5.1-591] vs. 28.5 [2.9-119.3] BAU/ml,p =??.18). Furthermore,the percentage of participants with positive SARS-CoV-2 surrogate virus neutralization test results was not statistically different between groups (20% vs. 15%,p =??.40). S1-specific T cell and RBD-specific B cell responses were also comparable between the M and V groups (230 [41-420] vs. 268 [118-510],p =??.65 and 2 [0-10] vs. 2 [0-13] spot-forming units/106 peripheral blood mononuclear cells,p =??.60). In conclusion,compared with an additional dose of viral vector COVID-19 vaccine,a dose of mRNA COVID-19 vaccine did not elicit significantly different responses in KT recipients,regarding either humoral or cell-mediated immunity. (TCTR20211102003).
View Publication
文献
C. Liu et al. (jul 2022)
Scientific reports 12 1 12068
Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma.
Monoclonal antibodies are at the vanguard of the most promising cancer treatments. Whereas traditional therapeutic antibodies have been limited to extracellular antigens,T cell receptor mimic (TCRm) antibodies can target intracellular antigens presented by cell surface major histocompatibility complex (MHC) proteins. TCRm antibodies can therefore target a repertoire of otherwise undruggable cancer antigens. However,the consequences of off-target peptide/MHC recognition with engineered T cell therapies are severe,and thus there are significant safety concerns with TCRm antibodies. Here we explored the specificity and safety profile of a new TCRm-based T cell therapy for hepatocellular carcinoma (HCC),a solid tumor for which no effective treatment exists. We targeted an alpha-fetoprotein peptide presented by HLA-A*02 with a highly specific TCRm,which crystallographic structural analysis showed binds directly over the HLA protein and interfaces with the full length of the peptide. We fused the TCRm to the ? and ? subunits of a TCR,producing a signaling AbTCR construct. This was combined with an scFv/CD28 co-stimulatory molecule targeting glypican-3 for increased efficacy towards tumor cells. This AbTC + co-stimulatory T cell therapy showed potent activity against AFP-positive cancer cell lines in vitro and an in an in vivo model and undetectable activity against AFP-negative cells. In an in-human safety assessment,no significant adverse events or cytokine release syndrome were observed and evidence of efficacy was seen. Remarkably,one patient with metastatic HCC achieved a complete remission after nine months and ultimately qualified for a liver transplant.
View Publication
文献
I. D. Ferguson et al. (jul 2022)
Nature communications 13 1 4121
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance.
The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here,we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline,in drug resistance,and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide,including CD53,CD10,EVI2B,and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally,we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological,therapeutic,and diagnostic understanding of myeloma.
View Publication
文献
R. Bignold et al. (jul 2022)
Respiratory research 23 1 183
Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease.
BACKGROUND Airway remodeling is a significant contributor to impaired lung function in chronic allergic airway disease. Currently,no therapy exists that is capable of targeting these structural changes and the consequent loss of function. In the context of chronic allergic inflammation,pericytes have been shown to uncouple from the pulmonary microvasculature,migrate to areas of inflammation,and significantly contribute to airway wall remodeling and lung dysfunction. This study aimed to elucidate the mechanism by which pulmonary pericytes accumulate in the airway wall in a model of chronic allergic airway inflammation. METHODS Mice were subjected to a protocol of chronic airway inflammation driven by the common environmental aeroallergen house dust mite. Phenotypic changes to lung pericytes were assessed by flow cytometry and immunostaining,and the functional capacity of these cells was evaluated using in vitro migration assays. The molecular mechanisms driving these processes were targeted pharmacologically in vivo and in vitro. RESULTS Pericytes demonstrated increased CXCR4 expression in response to chronic allergic inflammation and migrated more readily to its cognate chemokine,CXCL12. This increase in migratory capacity was accompanied by pericyte accumulation in the airway wall,increased smooth muscle thickness,and symptoms of respiratory distress. Pericyte uncoupling from pulmonary vessels and subsequent migration to the airway wall were abrogated following topical treatment with the CXCL12 neutraligand LIT-927. CONCLUSION These results provide new insight into the role of the CXCL12/CXCR4 signaling axis in promoting pulmonary pericyte accumulation and airway remodeling and validate a novel target to address tissue remodeling associated with chronic inflammation.
View Publication
文献
T. Kwok et al. ( 2022)
Frontiers in aging 3 838943
Age-Associated Changes to Lymph Node Fibroblastic Reticular Cells.
The decreased proportion of antigen-inexperienced,na{\{i}}ve T cells is a hallmark of aging in both humans and mice and contributes to reduced immune responses particularly against novel and re-emerging pathogens. Na{\"{i}}ve T cells depend on survival signals received during their circulation among the lymph nodes by direct contacts with stroma in particular fibroblastic reticular cells. Macroscopic changes to the architecture of the lymph nodes have been described but it is unclear how lymph node stroma are altered with age and whether these changes contribute to reduced na{\"{i}}ve T cell maintenance. Here using 2-photon microscopy we determined that the aged lymph node displayed increased fibrosis and correspondingly that na{\"{i}}ve T-cell motility was impaired in the aged lymph node especially in proximity to fibrotic deposition. Functionally adoptively transferred young na{\"{i}}ve T-cells exhibited reduced homeostatic turnover in aged hosts supporting the role of T cell-extrinsic mechanisms that regulate their survival. Further we determined that early development of resident fibroblastic reticular cells was impaired which may correlate to the declining levels of na{\"{i}}ve T-cell homeostatic factors observed in aged lymph nodes. Thus our study addresses the controversy as to whether aging impacts the composition lymph node stroma and supports a model in which impaired differentiation of lymph node fibroblasts and increased fibrosis inhibits the interactions necessary for na{\"{i}}ve T cell homeostasis."
View Publication
文献
H. Huang et al. ( 2022)
Frontiers in immunology 13 911390
Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis.
Fucoidan has sparked considerable interest in biomedical applications because of its inherent (bio)physicochemical characteristics,particularly immunomodulatory effects on macrophages,neutrophils,and natural killer cells. However,the effect of fucoidan on T cells and the following regulatory interaction on cellular function has not been reported. In this work,the effect of sterile fucoidan on the T-cell response and the subsequent modulation of osteogenesis is investigated. The physicochemical features of fucoidan treated by high-temperature autoclave sterilization are characterized by UV-visible spectroscopy,X-ray diffraction,Fourier transform infrared and nuclear magnetic resonance analysis. It is demonstrated that high-temperature autoclave treatment resulted in fucoidan depolymerization,with no change in its key bioactive groups. Further,sterile fucoidan promotes T cells proliferation and the proportion of differentiated T cells decreases with increasing concentration of fucoidan. In addition,the supernatant of T cells co-cultured with fucoidan greatly suppresses the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with fucoidan. Therefore,our work offers new insight into the fucoidan-mediated T cell and osteoblast interplay.
View Publication
文献
S. Mishra et al. (apr 2022)
Bio-protocol 12 8 e4391
An Optimized Tat/Rev Induced Limiting Dilution Assay for the Characterization of HIV-1 Latent Reservoirs.
The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However,when ART is suspended,the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently,the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes,thus,restricting them from a broader level application. The novel TILDA,labelled as U-TILDA ('U' for universal),can detect all the major genetic subtypes of HIV-1 unbiasedly,and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. Graphical abstract.
View Publication