技术资料
-
Z. Zou et al. (Oct 2024) Nature 634 8035RNA m 5 C oxidation by TET2 regulates chromatin state and leukaemogenesis
Mutation of tet methylcytosine dioxygenase 2 (encoded by TET2 ) drives myeloid malignancy initiation and progression 1 – 3 . TET2 deficiency is known to cause a globally opened chromatin state and activation of genes contributing to aberrant haematopoietic stem cell self-renewal 4,5 . However,the open chromatin observed in TET2-deficient mouse embryonic stem cells,leukaemic cells and haematopoietic stem and progenitor cells 5 is inconsistent with the designated role of DNA 5-methylcytosine oxidation of TET2. Here we show that chromatin-associated retrotransposon RNA 5-methylcytosine (m 5 C) can be recognized by the methyl-CpG-binding-domain protein MBD6,which guides deubiquitination of nearby monoubiquitinated Lys119 of histone H2A (H2AK119ub) to promote an open chromatin state. TET2 oxidizes m 5 C and antagonizes this MBD6-dependent H2AK119ub deubiquitination. TET2 depletion thereby leads to globally decreased H2AK119ub,more open chromatin and increased transcription in stem cells. TET2- mutant human leukaemia becomes dependent on this gene activation pathway,with MBD6 depletion selectively blocking proliferation of TET2 -mutant leukaemic cells and largely reversing the haematopoiesis defects caused by Tet2 loss in mouse models. Together,our findings reveal a chromatin regulation pathway by TET2 through retrotransposon RNA m 5 C oxidation and identify the downstream MBD6 protein as a feasible target for developing therapies specific against TET2 mutant malignancies. Subject terms: Molecular biology,Chromatin View Publication -
Y. Zeng et al. (Sep 2024) Biomolecules 14 9Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis
Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia,renal anemia,and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow,which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure,we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin − /c-KIT + /Sca-1 + HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway,facilitating the proliferation and differentiation of HSPC. In vitro,SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E,CFU-E,and CFU-GM,while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally,SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion,SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression,thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders. View Publication -
H. Janakiraman et al. (Sep 2024) World Journal of Oncology 15 5Targeting SNAI1-Mediated Colorectal Cancer Chemoresistance and Stemness by Sphingosine Kinase 2 Inhibition
Epithelial-to-mesenchymal transition (EMT),cancer stem cells (CSCs),and colorectal cancer (CRC) therapy resistance are closely associated. Prior reports have demonstrated that sphingosine-1-phosphate (S1P) supports stem cells and maintains the CSC phenotype. We hypothesized that the EMT inducer SNAI1 drives S1P signaling to amplify CSC self-renewal capacity and chemoresistance. CRC cell lines with or without ectopic expression of SNAI1 were used to study the role of S1P signaling as mediators of cancer stemness and 5-fluorouracil (5FU) chemoresistance. The therapeutic ability of sphingosine kinase 2 (SPHK2) was assessed using siRNA and ABC294640,a SPHK2 inhibitor. CSCs were isolated from patient-derived xenografts (PDXs) and assessed for SPHK2 and SNAI1 expression. Ectopic SNAI1 expressing cell lines demonstrated elevated SPHK2 expression and increased SPHK2 promoter activity. SPHK2 inhibition with siRNA or ABC294640 ablated in vitro self-renewal and sensitized cells to 5FU. CSCs isolated from CRC PDXs express increased SPHK2 relative to the non-CSC population. Combination ABC294640/5FU therapy significantly inhibited tumor growth in mice and enhanced 5FU response in therapy-resistant CRC patient-derived tumor organoids (PDTOs). SNAI1/SPHK2 signaling mediates cancer stemness and 5FU resistance,implicating S1P as a therapeutic target for CRC. The S1P inhibitor ABC294640 holds potential as a therapeutic agent to target CSCs in therapy refractory CRC. View Publication -
A. R. Marderstein et al. (Sep 2024) Nature 634 8032Single-cell multi-omics map of human fetal blood in Down syndrome
Down syndrome predisposes individuals to haematological abnormalities,such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood 1 – 3 . Here,to understand dysregulated haematopoiesis in Down syndrome,we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore,we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are ‘primed’ to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts,we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore,as mutations in Down syndrome display a signature of oxidative stress 4,5,we validated both increased mitochondrial mass and oxidative stress in Down syndrome,and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together,our single-cell,multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions. Subject terms: Haematopoietic stem cells,Leukaemia,Haematopoiesis,Haematological diseases,Aneuploidy View Publication -
S. Penna et al. (Sep 2024) Frontiers in Endocrinology 15 -11Correction of osteopetrosis in the neonate oc/oc murine model after lentiviral vector gene therapy and non-genotoxic conditioning
Autosomal recessive osteopetrosis (ARO) is a rare genetic disease,characterized by increased bone density due to defective osteoclast function. Most of the cases are due to TCIRG1 gene mutation,leading to severe bone phenotype and death in the first years of life. The standard therapy is the hematopoietic stem cell transplantation (HSCT),but its success is limited by several constraints. Conversely,gene therapy (GT) could minimize the immune-mediated complications of allogeneic HSCT and offer a prompt treatment to these patients. The Tcirg1 -defective oc/oc mouse model displays a short lifespan and high bone density,closely mirroring the human condition. In this work,we exploited the oc/oc neonate mice to optimize the critical steps for a successful therapy. First,we showed that lentiviral vector GT can revert the osteopetrotic bone phenotype,allowing long-term survival and reducing extramedullary haematopoiesis. Then,we demonstrated that plerixafor-induced mobilization can further increase the high number of HSPCs circulating in peripheral blood,facilitating the collection of adequate numbers of cells for therapeutic purposes. Finally,pre-transplant non-genotoxic conditioning allowed the stable engraftment of HSPCs,albeit at lower level than conventional total body irradiation,and led to long-term survival and correction of bone phenotype,in the absence of acute toxicity. These results will pave the way to the implementation of an effective GT protocol,reducing the transplant-related complication risks in the very young and severely affected ARO patients. View Publication -
K. Teranishi et al. (Sep 2024) Scientific Reports 14Label-free ghost cytometry for manufacturing of cell therapy products
Automation and quality control (QC) are critical in manufacturing safe and effective cell and gene therapy products. However,current QC methods,reliant on molecular staining,pose difficulty in in-line testing and can increase manufacturing costs. Here we demonstrate the potential of using label-free ghost cytometry (LF-GC),a machine learning-driven,multidimensional,high-content,and high-throughput flow cytometry approach,in various stages of the cell therapy manufacturing processes. LF-GC accurately quantified cell count and viability of human peripheral blood mononuclear cells (PBMCs) and identified non-apoptotic live cells and early apoptotic/dead cells in PBMCs (ROC-AUC: area under receiver operating characteristic curve = 0.975),T cells and non-T cells in white blood cells (ROC-AUC = 0.969),activated T cells and quiescent T cells in PBMCs (ROC-AUC = 0.990),and particulate impurities in PBMCs (ROC-AUC ≧ 0.998). The results support that LF-GC is a non-destructive label-free cell analytical method that can be used to monitor cell numbers,assess viability,identify specific cell subsets or phenotypic states,and remove impurities during cell therapy manufacturing. Thus,LF-GC holds the potential to enable full automation in the manufacturing of cell therapy products with reduced cost and increased efficiency. Subject terms: Biotechnology,Cell biology,Immunology,Biomedical engineering View Publication -
E. S. Park et al. (Sep 2024) Frontiers in Pharmacology 15Paulownin elicits anti-tumor effects by enhancing NK cell cytotoxicity through JNK pathway activation
Paulownin,a natural compound derived from Paulownia tomentosa wood,exhibits various physiological functions,including anti-bacterial and anti-fungal effects. However,the impact of paulownin on natural killer (NK) cell immune activity remains largely unknown. In this study,we investigated the effect of paulownin on NK cell activity both in vitro and in vivo,and explored its potential mechanisms. NK-92 cells were used for in vitro experiments and a BALB/c mouse model with B16F10 cells injected subcutaneously were used for in vivo anti-tumor analysis. We found that paulownin enhanced the cytolytic activity of NK-92 cells against leukemia,human colon,and human lung cancer cell lines. Paulownin treatment increased the expression of the degranulation marker protein CD107a and cytolytic granules,including granzyme B and perforin in NK-92 cells. Moreover,these enhancements of cytotoxicity and the expression of cytolytic granules induced by paulownin were also observed in human primary NK cells. Signaling studies showed that paulownin promoted the phosphorylation of JNK. The increased perforin expression and elevated cytotoxic activity induced by paulownin were effectively inhibited by pre-treatment with a JNK inhibitor. In vivo studies demonstrated that the administration of paulownin suppressed the growth of B16F10 melanoma cells allografted into mice. Paulownin administration promoted the activation of NK cells in the spleen of mice,resulting in enhanced cytotoxicity against YAC-1 cells. Moreover,the anti-tumor effects of paulownin were reduced upon the depletion of NK cells. Therefore,these results suggest that paulownin enhances NK cell cytotoxicity by activating the JNK signaling pathway and provide significant implications for developing new strategies for cancer immunotherapy. View Publication -
L. S. Cruz et al. (Oct 2024) Cancer Research Communications 4 10Chemotherapy Enriches for Proinflammatory Macrophage Phenotypes that Support Cancer Stem-Like Cells and Disease Progression in Ovarian Cancer
High-grade serous ovarian cancer remains a poorly understood disease with a high mortality rate. Although most patients respond to cytotoxic therapies,a majority will experience recurrence. This may be due to a minority of drug-resistant cancer stem-like cells (CSC) that survive chemotherapy and are capable of repopulating heterogeneous tumors. It remains unclear how CSCs are supported in the tumor microenvironment (TME) particularly during chemotherapy exposure. Tumor-associated macrophages (TAM) make up half of the immune population of the ovarian TME and are known to support CSCs and contribute to cancer progression. TAMs are plastic cells that alter their phenotype in response to environmental stimuli and thus may influence CSC maintenance during chemotherapy. Given the plasticity of TAMs,we studied the effects of carboplatin on macrophage phenotypes using both THP1- and peripheral blood mononuclear cell (PBMC)–derived macrophages and whether this supports CSCs and ovarian cancer progression following treatment. We found that carboplatin exposure induces an M1-like proinflammatory phenotype that promotes SOX2 expression,spheroid formation,and CD117 + ovarian CSCs,and that macrophage-secreted CCL2/MCP-1 is at least partially responsible for this effect. Depletion of TAMs during carboplatin exposure results in fewer CSCs and prolonged survival in a xenograft model of ovarian cancer. This study supports a role for platinum-based chemotherapies in promoting a transient proinflammatory M1-like TAM that enriches for CSCs during treatment. Improving our understanding of TME responses to cytotoxic drugs and identifying novel mechanisms of CSC maintenance will enable the development of better therapeutic strategies for high-grade serous ovarian cancer. Significance: We show that chemotherapy enhances proinflammatory macrophage phenotypes that correlate with ovarian cancer progression. Given that macrophages are the most prominent immune cell within these tumors,this work provides the foundation for future translational studies targeting specific macrophage populations during chemotherapy,a promising approach to prevent relapse in ovarian cancer. View Publication -
M. Nötzel et al. (Sep 2024) International Journal of Molecular Sciences 25 17Raman Spectroscopy of Optically Trapped Living Human T Cell Subsets and Monocytes
In recent years,Raman spectroscopy has garnered growing interest in the field of biomedical research. It offers a non-invasive and label-free approach to defining the molecular fingerprint of immune cells. We utilized Raman spectroscopy on optically trapped immune cells to investigate their molecular compositions. While numerous immune cell types have been studied in the past,the characterization of living human CD3/CD28-stimulated T cell subsets remains incomplete. In this study,we demonstrate the capability of Raman spectroscopy to readily distinguish between naïve and stimulated CD4 and CD8 cells. Additionally,we compared these cells with monocytes and discovered remarkable similarities between stimulated T cells and monocytes. This paper contributes to expanding our knowledge of Raman spectroscopy of immune cells and serves as a launching point for future clinical applications. View Publication -
J. Mei et al. (Sep 2024) Journal for Immunotherapy of Cancer 12 9Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade
Immune checkpoint blockade (ICB) has made remarkable achievements,but newly identified armored and cold tumors cannot respond to ICB therapy. The high prevalence of concomitant medications has huge impact on immunotherapeutic responses,but the clinical effects on the therapeutic outcome of armored and cold tumors are still unclear. In this research,using large-scale transcriptomics datasets,the expression and potential biological functions of angiotensin II receptor 1 (AGTR1),the target of angiotensin receptor blocker (ARB),were investigated. Next,the roles of ARB in tumor cells and tumor microenvironment cells were defined by a series of in vitro and in vivo assays. In addition,the clinical impacts of ARB on ICB therapy were assessed by multicenter cohorts and meta-analysis. AGTR1 was overexpressed in armored and cold tumors and associated with poor response to ICB therapy. ARB,the inhibitor for AGTR1,only suppressed the aggressiveness of tumor cells with high AGTR1 expression,which accounted for a very small proportion. Further analysis revealed that AGTR1 was always highly expressed in cancer-associated fibroblasts (CAFs) and ARB inhibited type I collagen expression in CAFs by suppressing the RhoA-YAP axis. Moreover,ARB could also drastically reverse the phenotype of armored and cold to soft and hot in vivo,leading to a higher response to ICB therapy. In addition,both our in-house cohorts and meta-analysis further supported the idea that ARB can significantly enhance ICB efficacy. Overall,we identify AGTR1 as a novel target in armored and cold tumors and demonstrate the improved therapeutic efficacy of ICB in combination with ARB. These findings could provide novel clinical insight into how to treat patients with refractory armored and cold tumors. View Publication -
C. Colussi et al. (Sep 2024) Stem Cell Research & Therapy 15 6Nucleoporin 153 deficiency in adult neural stem cells defines a pathological protein-network signature and defective neurogenesis in a mouse model of AD
Reduction of adult hippocampal neurogenesis is an early critical event in Alzheimer’s disease (AD),contributing to progressive memory loss and cognitive decline. Reduced levels of the nucleoporin 153 (Nup153),a key epigenetic regulator of NSC stemness,characterize the neural stem cells isolated from a mouse model of AD (3×Tg) (AD-NSCs) and determine their altered plasticity and gene expression. Nup153-regulated mechanisms contributing to NSC function were investigated: (1) in cultured NSCs isolated from AD and wild type (WT) mice by proteomics; (2) in vivo by lentiviral-mediated delivery of Nup153 or GFP in the hippocampus of AD and control mice analyzing neurogenesis and cognitive function; (3) in human iPSC-derived brain organoids obtained from AD patients and control subjects as a model of neurodevelopment. Proteomic approach identified Nup153 interactors in WT- and AD-NSCs potentially implicated in neurogenesis regulation. Gene ontology (GO) analysis showed that Nup153-bound proteins in WT-NSCs were involved in RNA metabolism,nuclear import and epigenetic mechanisms. Nup153-bound proteins in AD-NSCs were involved in pathways of neurodegeneration,mitochondrial dysfunction,proteasomal processing and RNA degradation. Furthermore,recovery of Nup153 levels in AD-NSCs reduced the levels of oxidative stress markers and recovered proteasomal activity. Lentiviral-mediated delivery of Nup153 in the hippocampal niche of AD mice increased the proliferation of early progenitors,marked by BrdU/DCX and BrdU/PSANCAM positivity and,later,the integration of differentiating neurons in the cell granule layer (BrdU/NeuN + cells) compared with GFP-injected AD mice. Consistently,Nup153-injected AD mice showed an improvement of cognitive performance in comparison to AD-GFP mice at 1 month after virus delivery assessed by Morris Water Maze. To validate the role of Nup153 in neurogenesis we took advantage of brain organoids derived from AD-iPSCs characterized by fewer neuroepithelial progenitor loops and reduced differentiation areas. The upregulation of Nup153 in AD organoids recovered the formation of neural-like tubes and differentiation. Our data suggest that the positive effect of Nup153 on neurogenesis is based on a complex regulatory network orchestrated by Nup153 and that this protein is a valuable disease target. The online version contains supplementary material available at 10.1186/s13287-024-03805-1. View Publication -
K. Lee et al. (Sep 2024) Scientific Reports 14 374Ultralow-dose irradiation enables engraftment and intravital tracking of disease initiating niches in clonal hematopoiesis
Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion,governing progression,and leukemic transformation of hematological clonal disorders. However,our ability to interrogate the niche in pre-malignant conditions has been limited,as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here,we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity,cell viability,and HSC-supportive functions of the stromal cells,suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2 + /− and its healthy counterpart,showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably,stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 59 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1032 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2916 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 206 项目
- 癌症 7 项目
- 神经科学 663 项目
- 移植研究 106 项目
- 类器官 155 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 74 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 63 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 894 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 153 项目
- MethoCult 509 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 251 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 236 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 452 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 103 项目
- 先天性淋巴细胞 40 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 20 项目
- 单个核细胞 92 项目
- 单核细胞 191 项目
- 多能干细胞 1985 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 471 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 983 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 204 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 107 项目
- CD8+T细胞 88 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 115 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 191 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号