J. Renkawitz et al. (apr 2019)
Nature 568 7753 546--550
Nuclear positioning facilitates amoeboid migration along the path of least resistance.
During metazoan development,immune surveillance and cancer dissemination,cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix,generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast,amoeboid cells such as leukocytes use non-destructive strategies of locomotion7,raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes,and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus,which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore,cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted,migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration,our findings link the fundamental organization of cellular polarity to the strategy of locomotion.
View Publication
文献
J. Quancard et al. (mar 2019)
Nature chemical biology 15 3 304--313
An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient.
MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-kappaB activation. We discovered nanomolar,selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580,locking the protease in an inactive conformation. Interestingly,we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability,reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency,we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein,the most potent of the allosteric inhibitors rescued NF-kappaB and JNK signaling in patient lymphocytes. Following compound washout,MALT1 substrate cleavage was partly recovered. Thus,a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue,inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.
View Publication
文献
D. M. Previte et al. (apr 2019)
Cell reports 27 1 129--141.e4
Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells.
Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed by CD4+ T cells and tempers their homeostatic expansion. Because CD4+ T cell proliferation is tightly coupled to bioenergetics,we investigate the role of LAG-3 in modulating naive CD4+ T cell metabolism. LAG-3 deficiency enhances the metabolic profile of naive CD4+ T cells by elevating levels of mitochondrial biogenesis. In vivo,LAG-3 blockade partially restores expansion and the metabolic phenotype of wild-type CD4+ T cells to levels of Lag3-/- CD4+ T cells,solidifying that LAG-3 controls these processes. Lag3-/- CD4+ T cells also demonstrate greater signal transducer and activator of transcription 5 (STAT5) activation,enabling resistance to interleukin-7 (IL-7) deprivation. These results implicate this pathway as a target of LAG-3-mediated inhibition. Additionally,enhancement of STAT5 activation,as a result of LAG-3 deficiency,contributes to greater activation potential in these cells. These results identify an additional mode of regulation elicited by LAG-3 in controlling CD4+ T cell responses.
View Publication
文献
M. Pavel-Dinu et al. ( 2019)
Nature communications 10 1 1634
Gene correction for SCID-X1 in long-term hematopoietic stem cells.
Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy,we achieve up to 20{\%} targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45{\%}) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum,our study provides specificity,toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.
View Publication
文献
D. Park et al. (may 2019)
Scientific reports 9 1 7094
Differences in the molecular signatures of mucosal-associated invariant T cells and conventional T cells.
Mucosal-associated invariant T (MAIT) cells exhibit different characteristics from those of TCRalpha7.2- conventional T cells. They play important roles in various inflammatory diseases,including rheumatoid arthritis and inflammatory bowel disease. MAIT cells express a single T cell receptor alpha chain,TCRalpha7.2 segment associated with Jalpha33 and CDR3 with fixed length,which recognizes bacteria-derived vitamin B metabolites. However,the characteristics of MAIT cells and TCRalpha7.2+ CD161- T cells have never been compared. Here,we performed RNA sequencing to compare the properties of MAIT cells,TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells. Genome-wide transcriptomes of MAIT cells,TCRalpha7.2- conventional T cells,and TCRalpha7.2+ CD161- T cells were compared and analyzed using causal network analysis. This is the first report comparing the transcriptomes of MAIT cells,TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells. We also identified the predominant signaling pathways of MAIT cells,which differed from those of TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells,through a gene set enrichment test and upstream regulator analysis and identified the genes responsible for the characteristic MAIT cell phenotypes. Our study advances the complete understanding of MAIT biology.
View Publication
文献
J. Paris et al. (jul 2019)
Cell stem cell 25 1 137--148.e6
Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia.
Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation,generating self-renewing leukemic stem cells (LSCs). Here,we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function,including the tumor necrosis factor receptor Tnfrsf2,whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly,YTHDF2 is not essential for normal HSC function,with YTHDF2 deficiency actually enhancing HSC activity. Thus,we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.
View Publication
文献
C. G. Palii et al. (may 2019)
Cell stem cell 24 5 812--820.e5
Single-Cell Proteomics Reveal that Quantitative Changes in Co-expressed Lineage-Specific Transcription Factors Determine Cell Fate.
Hematopoiesis provides an accessible system for studying the principles underlying cell-fate decisions in stem cells. Proposed models of hematopoiesis suggest that quantitative changes in lineage-specific transcription factors (LS-TFs) underlie cell-fate decisions. However,evidence for such models is lacking as TF levels are typically measured via RNA expression rather than by analyzing temporal changes in protein abundance. Here,we used single-cell mass cytometry and absolute quantification by mass spectrometry to capture the temporal dynamics of TF protein expression in individual cells during human erythropoiesis. We found that LS-TFs from alternate lineages are co-expressed,as proteins,in individual early progenitor cells and quantitative changes of LS-TFs occur gradually rather than abruptly to direct cell-fate decisions. Importantly,upregulation of a megakaryocytic TF in early progenitors is sufficient to deviate cells from an erythroid to a megakaryocyte trajectory,showing that quantitative changes in protein abundance of LS-TFs in progenitors can determine alternate cell fates.
View Publication
文献
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
文献
C. Onyilagha et al. (jun 2019)
Journal of immunology (Baltimore,Md. : 1950)
NK Cells Are Critical for Optimal Immunity to Experimental Trypanosoma congolense Infection.
NK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases,their role in immunity to Trypanosoma congolense has not been investigated. NK cells are vital sources of IFN-gamma and TNF-alpha; two key cytokines that are known to play important roles in resistance to African trypanosomes. In this article,we show that infection with T. congolense leads to increased levels of activated and functional NK cells in multiple tissue compartments. Systemic depletion of NK cells with anti-NK1.1 mAb led to increased parasitemia,which was accompanied by significant reduction in IFN-gamma production by immune cells in the spleens and liver of infected mice. Strikingly,infected NFIL3-/- mice (which genetically lack NK cell development and function) on the normally resistant background were highly susceptible to T. congolense infection. These mice developed fulminating and uncontrolled parasitemia and died significantly earlier (13 ± 1 d) than their wild-type control mice (106 ± 26 d). The enhanced susceptibility of NFIL3-/- mice to infection was accompanied by significantly impaired cytokine (IFN-gamma and TNF-alpha) response by CD3+ T cells in the spleens and liver. Adoptive transfer of NK cells into NFIL3-/- mice before infection rescued them from acute death in a perforin-dependent manner. Collectively,these studies show that NK cells are critical for optimal resistance to T. congolense,and its deficiency leads to enhanced susceptibility in infected mice.
View Publication
文献
O. M. Omar et al. (nov 2018)
Molecular carcinogenesis 57 11 1577--1587
TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer.
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR,we detected significant overexpression of TIMP1 in the human gastric cancer samples,as compared to normal stomach samples (P {\textless} 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice,as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P {\textless} 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-alpha and activation of NF-kappaB whereas inhibition of NF-kappaB using BAY11-7082 led to inhibition of NF-kappaB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence,we showed nuclear localization of NF-kappaB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-kappaB and TIMP1. Using EDU assay,as a measure of proliferating cells,we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P {\textless} 0.05). In summary,our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-kappaB and inhibits TIMP1-mediated proliferative potential in gastric cancer.
View Publication
文献
J. E. Oh et al. (jul 2019)
Nature 571 7763 122--126
Migrant memory B cells secrete luminal antibody in the vagina.
Antibodies secreted into mucosal barriers serve to protect the host from a variety of pathogens,and are the basis for successful vaccines1. In type I mucosa (such as the intestinal tract),dimeric IgA secreted by local plasma cells is transported through polymeric immunoglobulin receptors2 and mediates robust protection against viruses3,4. However,owing to the paucity of polymeric immunoglobulin receptors and plasma cells,how and whether antibodies are delivered to the type II mucosa represented by the lumen of the lower female reproductive tract remains unclear. Here,using genital herpes infection in mice,we show that primary infection does not establish plasma cells in the lamina propria of the female reproductive tract. Instead,upon secondary challenge with herpes simplex virus 2,circulating memory B cells that enter the female reproductive tract serve as the source of rapid and robust antibody secretion into the lumen of this tract. CD4 tissue-resident memory T cells secrete interferon-gamma,which induces expression of chemokines,including CXCL9 and CXCL10. Circulating memory B cells are recruited to the vaginal mucosa in a CXCR3-dependent manner,and secrete virus-specific IgG2b,IgG2c and IgA into the lumen. These results reveal that circulating memory B cells act as a rapidly inducible source of mucosal antibodies in the female reproductive tract.
View Publication
文献
S. Natesampillai et al. (jun 2019)
Journal of immunology (Baltimore,Md. : 1950)
TRAILshort Protects against CD4 T Cell Death during Acute HIV Infection.
CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients,causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death,which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection,we used short hairpin RNA knockdown,CRISPR deletion,or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly,all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus,TRAILshort impacts T cell dynamics during HIV infection,and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is,therefore,a host-derived,host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted.
View Publication