技术资料
-
S. Pankaew et al. (dec 2021) STAR protocols 3 1 101041Multiplexed single-cell RNA-sequencing of mouse thymic and splenic samples.
Multiplexed single-cell RNA-sequencing (scRNA-seq) enables investigating several biological samples in one scRNA-seq experiment. Here,we use antibodies tagged with a hashtag oligonucleotide (Ab-HTO) to label each sample,and 10?— Genomics technology to analyze single-cell gene expression. Advantages of sample multiplexing are to reduce the cost of scRNA-seq assay and to avoid batch effect. It may also facilitate cell-doublet removal and the merging of several scRNA-seq assays. Herein,we apply multiplexed scRNA-seq to investigate mouse thymocytes and splenic T lymphocytes development. For complete details on the use and execution of this protocol,please refer to Nozais et al. (2021). View Publication -
J. Liu et al. (dec 2022) Nature communications 13 1 7519GPR174 knockdown enhances blood flow recovery in hindlimb ischemia mice model by upregulating AREG expression.
Regulatory T cells (Tregs) are critically involved in neovascularization,an important compensatory mechanism in peripheral artery disease. The contribution of G protein coupled receptor 174 (GPR174),which is a regulator of Treg function and development,in neovascularization remains elusive. Here,we show that genetic deletion of GPR174 in Tregs potentiated blood flow recovery in mice after hindlimb ischemia. GPR174 deficiency upregulates amphiregulin (AREG) expression in Tregs,thereby enhancing endothelial cell functions and reducing pro-inflammatory macrophage polarization and endothelial cell apoptosis. Mechanically,GPR174 regulates AREG expression by inhibiting the nuclear accumulation of early growth response protein 1 (EGR1) via G$\alpha$s/cAMP/PKA signal pathway activation. Collectively,these findings demonstrate that GPR174 negatively regulates angiogenesis and vascular remodeling in response to ischemic injury and that GPR174 may be a potential molecular target for therapeutic interventions of ischemic vascular diseases. View Publication -
J. Li et al. ( 2022) Frontiers in immunology 13 1043484A novel costimulatory molecule gene-modified leukemia cell-derived exosome-targeted CD4+ T cell vaccine efficiently enhances anti-leukemia immunity.
Previous studies demonstrated that CD4+ T cells can uptake tumor antigen-pulsed dendritic cell-derived exosomes (DEXO),which harbor tumor antigen peptide/pMHC I complex and costimulatory molecules and show potent effects on inducing antitumor immunity. However,in preliminary study,CD4+ T cells targeted by leukemia cell-derived exosomes (LEXs) did not show the expected effects in inducing effective anti-leukemia immunity,indicating that LEX is poorly immunogenetic largely due to an inadequate costimulatory capacity. Therefore,LEX-based anti-leukemia vaccines need to be optimized. In this study,we constructed a novel LEX-based vaccine by combining CD4+ T cells with costimulatory molecules gene-modified LEXs,which harbor upregulated CD80 and CD86,and the anti-leukemia immunity of CD80 and CD86 gene-modified LEX-targeted CD4+ T cells was investigated. We used lentiviral vectors encoding CD80 and CD86 to successfully transduced the L1210 leukemia cells,and the expression of CD80 and CD86 was remarkably upregulated in leukemia cells. The LEXs highly expressing CD80 and CD86 were obtained from the supernatants of gene-transduced leukemia cells. Our data have shown that LEX-CD8086 could promote CD4+ T cell proliferation and Th1 cytokine secretion more efficiently than control LEXs. Moreover,CD4+ TLEX-CD8086 expressed the acquired exosomal costimulatory molecules. With acquired costimulatory molecules,CD4+ TLEX-CD8086 can act as APCs and are capable of directly stimulating the leukemia cell antigen-specific CD8+ CTL response. This response was higher in potency compared to that noted by the other formulations. Furthermore,the animal study revealed that the CD4+ TLEX-CD8086 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice than other formulations did in both protective and therapeutic models. In conclusion,this study revealed that CD4+ TLEX-CD8086 could effectively induce more potential anti-leukemia immunity than LEX-CD8086 alone,suggesting that the utilization of a costimulatory molecule gene-modified leukemia cell-derived exosome-targeted CD4+ T cell vaccine may have promising potential for leukemia immunotherapy. View Publication -
Y. Liang et al. ( 2022) Theranostics 12 18 7729--7744Self-assembly of X-shaped antibody to combine the activity of IgG and IgA for enhanced tumor killing.
Rationale: IgA can induce activation of neutrophils which are the most abundant cell type in blood,but the development of IgA as therapeutic has been confounded by its short half-life and a weak ability to recruit NK cells as effector cells. Therefore,we generated an X-shaped antibody (X-body) based on the principle of molecular self-assembly that combines the activities of both IgG and IgA,which can effectively recruit and activate NK cells,macrophages,and neutrophils to kill tumor cells. Methods: X-body was generated by using a self-assembly strategy. The affinity of the X-body with the antigen and Fc receptors was tested by surface plasmon resonance. The shape of X-body was examined using negative staining transmission electron microscopy. The tumor cell killing activity of X-body was assessed in vitro and in multiple syngeneic mouse models. To explore the mechanism of X-body,tumor-infiltrating immune cells were analyzed by single-cell RNA-seq and flow cytometry. The dependence of neutrophil,macrophage,and NK cells for the X-body efficacy was confirmed by in vivo depletion of immune cell subsets. Results: The X-body versions of rituximab and trastuzumab combined the full spectrum activity of IgG and IgA and recruited NK cells,macrophages,and neutrophils as effector cells for eradication of tumor cells. Treatment with anti-hCD20 and anti-hHER2 X-bodies leads to a greater reduction in tumor burden in tumor-bearing mice compared with the IgA or IgG counterpart,and no obvious adverse effect is observed upon X-body treatment. Moreover,the X-body has a serum half-life and drug stability comparable to IgG. Conclusions: The X-body,as a myeloid-cell-centered therapeutic strategy,holds promise for the development of more effective cancer-targeting therapies than the current state of the art. View Publication -
J. Westerlund et al. ( 2022) Journal of immunology research 2022 8077281Suppression of T-Cell Proliferation by Normal Density Granulocytes Led to CD183 Downregulation and Cytokine Inhibition in T-Cells.
Normal density granulocytes (NDGs) can suppress T-cell responses in a similar way as myeloid-derived suppressor cells (MDSCs). In this study,we tested the hypothesis that NDGs from healthy donors preferentially inhibit T helper 1 (Th1) cells and investigated the myeloid-derived suppressive effect in different T-cell populations. We found that NDG-induced suppression of T-cell proliferation was contact dependent,mediated by integrin CD11b,and dependent on NDG-production of reactive oxygen species (ROS). The suppression was rapid and occurred within the first few hours of coculture. The suppression did not influence the CD8+/CD4+ ratio indicating an equal sensitivity in these populations. We further analyzed the CD4+ T helper subsets and found that NDGs induced a loss of Th1 surface marker,CD183,that was unrelated to ligand-binding to CD183. In addition,we analyzed the Th1,Th2,and Th17 cytokine production and found that all cytokine groups were suppressed when T-cells were incubated with NDGs. We therefore concluded that NDGs do not preferentially suppress Th1-cells. Instead,NDGs generally suppress Th cells and cytotoxic T-cells but specifically downregulate the Th1 marker CD183. View Publication -
A. A. Kajani et al. (nov 2022) RSC advances 12 51 32834--32843Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device.
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing,sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 $\mu$g mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs. View Publication -
S. Lambert et al. ( 2022) Frontiers in aging 3 1045648The influence of three-dimensional structure on na\ive T cell homeostasis and aging.
A breakdown in cellular homeostasis is thought to drive na{\{i}}ve T cell aging however the link between na{\"{i}}ve T cell homeostasis and aging in humans is poorly understood. To better address this we developed a lymphoid organoid system that maintains resting na{\"{i}}ve T cells for more than 2 weeks in conjunction with high CD45RA expression. Deep phenotypic characterization of na{\"{i}}ve T cells across age identified reduced CD45RA density as a hallmark of aging. A conversion from CD45RAhigh naive cells to a CD45RAlow phenotype was reproduced within our organoid system by structural breakdown but not by stromal cell aging or reduced lymphocyte density and mediated by alternative CD45 splicing. Together these data suggest that external influences within the lymph node microenvironment may cause phenotypic conversion of na{\"{i}}ve T cells in older adults." View Publication -
L. Yan et al. (nov 2022) BMC emergency medicine 22 1 182Role of CD8+ T cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: a prospective observational study.
BACKGROUND CD8+ T cells are important for protective immunity against intracellular pathogens. Excessive amounts of antigen and/or inflammatory signals often lead to the gradual deterioration of CD8+ T cell function,a state called exhaustion". However the association between CD8+ T cell exhaustion and acute respiratory distress syndrome (ARDS) has not been studied. This study was conducted to elucidate how CD8+ T cells and inhibitory receptors were related to the clinical prognosis of ARDS. METHODS A prospective observational study in an emergency department enrolled patients who were diagnosed with sepsis-associated ARDS according to the sepsis-3 criteria and Berlin definition. Peripheral blood samples were collected within 24??h post recruitment. CD8+ T cell count proliferation ratio cytokine secretion and the expression of coinhibitory receptors were assayed. RESULTS Sixty-two patients with ARDS met the inclusion criteria. CD8+ T cell counts and proliferation rates were dramatically decreased in non-surviving ARDS patients. Increasing programmed cell death 1 (PD-1) expression on the CD8+ T cell surface was seen in patients with worse organ function while an increasing level of T cell immunoglobulin mucin-3 (Tim-3) was associated with a longer duration of the shock. Kaplan-Meier analysis showed that low CD8+ T cell percentages and increased inhibitory molecule expression were significantly associated with a worse survival rate. CONCLUSIONS CD8+ T cells and coinhibitory receptors are promising independent prognostic markers of sepsis-induced ARDS and increased CD8+ T cell exhaustion is significantly correlated with poor prognosis." View Publication -
R. K. Johnson et al. (nov 2022) Scientific reports 12 1 19920Peripheral blood mononuclear cell phenotype and function are maintained after overnight shipping of whole blood.
Same day processing of biospecimens such as blood is not always feasible,which presents a challenge for research programs seeking to study a broad population or to characterize patients with rare diseases. Recruiting sites may not be equipped to process blood samples and variability in timing and technique employed to isolate peripheral blood mononuclear cells (PBMCs) at local sites may compromise reproducibility across patients. One solution is to send whole blood collected by routine phlebotomy via overnight courier to the testing site under ambient conditions. Determining the impact of shipping on subsequent leukocyte responses is a necessary prerequisite to any experimental analysis derived from transported samples. To this end,whole blood was collected from healthy control subjects and processed fresh or at 6,24 and 48 h after collection and handling under modeled shipping conditions. At endpoint,whole blood was assessed via a complete blood count with differential and immunophenotyped using a standardized panel of antibodies [HLADR,CD66b,CD3,CD14,CD16]. PBMCs and neutrophils were isolated from whole blood and subjected to ex vivo stimulation with lipopolysaccharide and heat-killed Staphylococcus aureus. Stimulated release of cytokines and chemokines was assessed by cytometric bead array. RNA was also isolated from PBMCs to analyze transcriptional changes induced by shipping. The complete blood count with differential revealed that most parameters were maintained in shipped blood held for 24 h at ambient temperature. Immunophenotyping indicated preservation of cellular profiles at 24 h,although with broadening of some populations and a decrease in CD16 intensity on classical monocytes. At the transcriptional level,RNAseq analysis identified upregulation of a transcription factor module associated with inflammation in unstimulated PBMCs derived from whole blood shipped overnight. However,these changes were limited in both scale and number of impacted genes. Ex vivo stimulation of PBMCs further revealed preservation of functional responses in cells isolated from shipped blood held for 24 h at ambient temperature. However,neutrophil responses were largely abrogated by this time. By 48 h neither cell population responded within normal parameters. These findings indicate that robust immunophenotyping and PBMC stimulated response profiles are maintained in whole blood shipped overnight and processed within 24 h of collection,yielding results that are representative of those obtained from the sample immediately following venipuncture. This methodology is feasible for many patient recruitment sites to implement and allows for sophisticated immunological analysis of patient populations derived from large geographic areas. With regard to rare disease research,this meets a universal need to enroll patients in sufficient numbers for immunoprofiling and discovery of underlying pathogenic mechanisms. View Publication -
K. A. Hilliard et al. ( 2022) Frontiers in immunology 13 1007022Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis.
Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM,peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle,while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-na{\{i}}ve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells which correlates with decreased NK cell function and resolved with control of active disease." View Publication -
K. Ramji et al. (nov 2022) Scientific reports 12 1 19660Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity.
Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here,we investigated the role of arginase 1 (ARG1) in V$\kappa$*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in EY-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of V$\kappa$*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However,arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether,these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors. View Publication -
Y. Mo et al. (oct 2022) Immune network 22 5 e40Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model.
Mesenchymal stem cells (MSCs) are attractive alternatives to conventional anti-asthmatic drugs for severe asthma. Mechanisms underlying the anti-asthmatic effects of MSCs have not yet been elucidated. This study evaluated the anti-asthmatic effects of intravenously administered MSCs,focusing on macrophages and monocytes. Seven-week-old transgenic (Tg) mice with lung-specific overexpression of IL-13 were used to simulate chronic asthma. MSCs were intravenously administered four days before sampling. We examined changes in immune cell subpopulations,gene expression,and histological phenotypes. IL-13 Tg mice exhibited diverse features of chronic asthma,including severe type 2 inflammation,airway fibrosis,and mucus metaplasia. Intravenous administration of MSCs attenuated these asthmatic features just four days after a single treatment. MSC treatment significantly reduced SiglecF-CD11c-CD11b+ monocyte-derived macrophages (MoMs) and inhibited the polarization of MoMs into M2 macrophages,especially M2a and M2c. Furthermore,MSCs downregulated the excessive accumulation of Ly6c- monocytes in the lungs. While an intravenous adoptive transfer of Ly6c- monocytes promoted the infiltration of MoM and Th2 inflammation,that of MSC-exposed Ly6c- monocytes did not. Ex vivo Ly6c- MoMs upregulated M2-related genes,which were reduced by MSC treatment. Molecules secreted by Ly6c- MoMs from IL-13 Tg mice lungs upregulated the expression of fibrosis-related genes in fibroblasts,which were also suppressed by MSC treatment. In conclusion,intravenously administered MSCs attenuate asthma phenotypes of chronic asthma by modulating macrophages. Identifying M2 macrophage subtypes revealed that exposure to MSCs transforms the phenotype and function of macrophages. We suggest that Ly6c- monocytes could be a therapeutic target for asthma management. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 269 项目
- 上皮细胞研究 3 项目
- 免疫 1023 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 36 项目
- 嵌合体 30 项目
- 干细胞生物学 2908 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 5 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 200 项目
- 癌症 7 项目
- 神经科学 658 项目
- 移植研究 104 项目
- 类器官 147 项目
- 细胞外囊泡研究 7 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 97 项目
- 细胞系制备 186 项目
- 脐带血库 71 项目
- 药物发现和毒理检测 370 项目
- 血管生成细胞研究 1 项目
- 传染病 45 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 17 项目
- 癌症研究 704 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 8 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 10 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 61 项目
- CellAdhere 2 项目
- ClonaCell 111 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 888 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 30 项目
- IntestiCult 183 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 150 项目
- MethoCult 504 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 86 项目
- RSeT 13 项目
- ReLeSR 6 项目
- RoboSep 48 项目
- RosetteSep 252 项目
- STEMdiff 166 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 250 项目
- TeSR 1546 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 233 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 173 项目
- PSC衍生 42 项目
- T 细胞 446 项目
- 上皮细胞 124 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 40 项目
- 全血 7 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 89 项目
- 单核细胞 188 项目
- 多能干细胞 1979 项目
- 小胶质细胞 3 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 7 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 130 项目
- 气道细胞 4 项目
- 淋巴细胞 81 项目
- 癌细胞及细胞系 144 项目
- 癌细胞和细胞系 1 项目
- 白细胞 14 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 469 项目
- 神经细胞 15 项目
- 粒细胞及其亚群 103 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 34 项目
- 肠道细胞 87 项目
- 肾细胞 4 项目
- 肿瘤细胞 22 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 100 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 3 项目
- 调节性细胞 11 项目
- 软骨细胞 7 项目
- 造血干/祖细胞 975 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 18 项目
- 间充质干/祖细胞 201 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 146 项目
- 肾脏细胞 6 项目
- CD4+T细胞 105 项目
- CD8+T细胞 87 项目
- PSC衍生上皮细胞 28 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 20 项目
- PSC衍生神经细胞 111 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 18 项目
- 其他T细胞亚型 22 项目
- 呼吸道细胞 86 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 188 项目
- 调节性T细胞 62 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号