技术资料
-
C. M. Moshfegh et al. (oct 2023) Biological psychiatry global open science 3 4 919--929S100a9 Protects Against the Effects of Repeated Social Defeat Stress.
BACKGROUND Posttraumatic stress disorder,a consequence of psychological trauma,is associated with increased inflammation and an elevated risk of developing comorbid inflammatory diseases. However,the mechanistic link between this mental health disorder and inflammation remains elusive. We previously found that S100a8 and S100a9 messenger RNA,genes that encode the protein calprotectin,were significantly upregulated in T lymphocytes and positively correlated with inflammatory gene expression and the mitochondrial redox environment in these cells. Therefore,we hypothesized that genetic deletion of calprotectin would attenuate the inflammatory and redox phenotype displayed after psychological trauma. METHODS We used a preclinical mouse model of posttraumatic stress disorder known as repeated social defeat stress (RSDS) combined with pharmacological and genetic manipulation of S100a9 (which functionally eliminates calprotectin). A total of 186 animals (93 control,93 RSDS) were used in these studies. RESULTS Unexpectedly,we observed worsening of behavioral pathology,inflammation,and the mitochondrial redox environment in mice after RSDS compared with wild-type animals. Furthermore,loss of calprotectin significantly enhanced the metabolic demand on T lymphocytes,suggesting that this protein may play an undescribed role in mitochondrial regulation. This was further supported by single-cell RNA sequencing analysis demonstrating that RSDS and loss of S100a9 primarily altered genes associated with mitochondrial function and oxidative phosphorylation. CONCLUSIONS These data demonstrate that the loss of calprotectin potentiates the RSDS-induced phenotype,which suggests that its observed upregulation after psychological trauma may provide previously unexplored protective functions. View Publication -
A. Cutrina-Pons et al. (dec 2023) Immunology 170 4 483--494Inhibition of PI3K p110$\delta$ activity reduces IgE production in IL-4 and anti-CD40 stimulated human B cell cultures.
Phosphoinositide 3-kinase (PI3K) p110$\delta$ signalling negatively regulates the production of mouse IgE. However,there are disparities between the mouse and human IgE biology,and the role of PI3K p110$\delta$ in the production of human IgE is yet to be determined. To investigate the effect of PI3K p110$\delta$ inhibition in the production of human IgE we isolated human B cells from tonsil tissue and stimulated them with IL-4 and anti-CD40 antibody to induce class switching to IgE and IgG1 in the presence or absence of IC87114,a small molecule inhibitor of PI3K p110$\delta$. Using FACS,RT-PCR and ELISA we examined the effect of PI3K p110$\delta$ inhibition on IgE production and determined the mechanisms involved. Unlike in mice,we observed that PI3K p110$\delta$ inhibition significantly reduces the number of IgE+ switched cells and the amounts of secreted IgE in IL4 and anti-CD40 cultures. However,the number of IgG1+ cells and secreted IgG1 were largely unaffected by PI3K p110$\delta$ inhibition. The expression levels of AID,$\epsilon$ and $\gamma$1 germinal transcripts or other factors involved in the regulation of CSR to IgE and IgG1 were also unaffected by IC87114. However,we found that IC87114 significantly decreases the proliferation of tonsil B cells stimulated with IL-4 and anti-CD40,specifically reducing the frequency of cells that had undergone 4 divisions or more. In addition,PI3K p110$\delta$ inhibition reduced the levels of IRF4 expression in IgE+ germinal centre-like B cells leading to a block in plasma cell differentiation. In conclusion,PI3K p110$\delta$ signalling is required for the production of human IgE,which makes it a pharmacological target for the treatment of allergic disease. View Publication -
A. M. Metelo et al. (mar 2022) Cancer research communications 2 3 158--171Allogeneic Anti-BCMA CAR T Cells Are Superior to Multiple Myeloma-derived CAR T Cells in Preclinical Studies and May Be Combined with Gamma Secretase Inhibitors.
UNLABELLED Multiple myeloma remains an incurable plasma cell malignancy despite the rapidly evolving treatment landscape. Chimeric antigen receptor T cells targeted against BCMA have recently shown great promise in relapsed refractory multiple myeloma; however,all patients ultimately still progress from their disease. Lack of CAR T-cell persistence,impaired T-cell fitness in autologous CAR T-cell products and the presence of an immunosuppressive bone marrow (BM) microenvironment are contributory factors to treatment failure. We generated anti-BCMA CAR T cells from healthy donors (HD) and patients with multiple myeloma at different stages of disease to compare their T-cell profile,fitness,and cytotoxic activity in preclinical studies. We also used an ex vivo assay with multiple myeloma BM biopsies from distinct genomic subgroups to test the efficacy of HD-derived CAR T cells in a clinically relevant model. HD volunteers showed increased T-cell counts,higher CD4/CD8 ratio,and expanded na{\{i}}ve T-cell population compared with patients with multiple myeloma. After anti-BCMA CAR T-cell production patients with relapsed multiple myeloma had lower frequencies of CAR+ T cells decreased central memory phenotype and increased checkpoint inhibitory markers compared with HD-derived products which compromised their expansion and cytotoxicity against multiple myeloma cells in vitro. Importantly HD-derived CAR T cells efficiently killed primary multiple myeloma cells within the BM microenvironment of different multiple myeloma genomic subgroups and their cytotoxic activity could be boosted with gamma secretase inhibitors. In conclusion allogeneic anti-BCMA CAR T cells are a potential therapeutic strategy for patients with relapsed multiple myeloma and should be further developed in the clinic. SIGNIFICANCE Multiple myeloma is an incurable cancer of the plasma cells. A new therapy with anti-BCMA CAR T cells - the patient's own T cells genetically engineered to find and kill myeloma cancer cells - has shown encouraging results. Unfortunately patients still relapse. In this study we propose to use T cells from HD volunteers which have a stronger T-cell fitness higher cancer killing capacity and are ready to be administered when needed." View Publication -
F. Qian et al. (jan 2023) Journal of visualized experiments : JoVE 191Intra-Peritoneal Transplantation for Generating Acute Myeloid Leukemia in Mice.
There is an unmet need for novel therapies to treat acute myeloid leukemia (AML) and the associated relapse that involves persistent leukemia stem cells (LSCs). An experimental AML rodent model to test therapies based on successfully transplanting these cells via retro-orbital injections in recipient mice is fraught with challenges. The aim of this study was to develop an easy,reliable,and consistent method to generate a robust murine model of AML using an intra-peritoneal route. In the present protocol,bone marrow cells were transduced with a retrovirus expressing human MLL-AF9 fusion oncoprotein. The efficiency of lineage negative (Lin-) and Lin-Sca-1+c-Kit+ (LSK) populations as donor LSCs in the development of primary AML was tested,and intra-peritoneal injection was adopted as a new method to generate AML. Comparison between intra-peritoneal and retro-orbital injections was done in serial transplantations to compare and contrast the two methods. Both Lin- and LSK cells transduced with human MLL-AF9 virus engrafted well in the bone marrow and spleen of recipients,leading to a full-blown AML. The intra-peritoneal injection of donor cells established AML in recipients upon serial transplantation,and the infiltration of AML cells was detected in the blood,bone marrow,spleen,and liver of recipients by flow cytometry,qPCR,and histological analyses. Thus,intra-peritoneal injection is an efficient method of AML induction using serial transplantation of donor leukemic cells. View Publication -
C. Sun et al. (dec 2022) Immune network 22 6 e49MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction.
Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI,while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore,we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed,which were subjected to exosome treatment. The expression of inflammatory factors,heart function,and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition,they promoted heart function,suppressed inflammatory responses,and de-activated TLR4/NF-$\kappa$B signaling pathway in MI mice. In conclusion,miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4. View Publication -
J. Qiu et al. (dec 2022) STAR protocols 3 4 101828Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging.
Mitochondrial membrane potential (MMP) segregates functionally distinct subsets within highly purified hematopoietic stem cells (HSCs). Here,we detail a protocol for FACS isolation of MMP sub-fractions of phenotypically defined mouse and human HSCs. These steps are followed by high-/super-resolution immunofluorescence microscopy of HSCs' lysosomes. While the protocol describes the isolation of quiescent HSCs,which are the most potent subsets,it could also be applied to other HSC subsets. This protocol overcomes some experimental challenges associated with low HSC numbers. For complete details on the use and execution of this protocol,please refer to Liang et al. (2020) and Qiu et al. (2021). View Publication -
M. Blanter et al. (dec 2022) Respiratory research 23 1 359Sputum from patients with primary ciliary dyskinesia contains high numbers of dysfunctional neutrophils and inhibits efferocytosis.
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by recurrent airway infection and inflammation. There is no cure for PCD and to date there are no specific treatments available. Neutrophils are a crucial part of the immune system and are known to be dysfunctional in many inflammatory diseases. So far,the role of the neutrophils in PCD airways is largely unknown. The purpose of this study was to investigate the phenotype and function of airway neutrophils in PCD,and compare them to blood neutrophils. METHODS Paired peripheral blood and spontaneously expectorated sputum samples from patients with PCD (n??=??32) and a control group of patients with non-PCD,non-cystic fibrosis bronchiectasis (n??=??5) were collected. The expression of neutrophil-specific surface receptors was determined by flow cytometry. Neutrophil function was assessed by measuring the extent of actin polymerization,production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) in response to activating stimuli. RESULTS Sputum neutrophils displayed a highly activated phenotype and were unresponsive to stimuli that would normally induce ROS production,actin polymerization and the expulsion of NETs. In addition,PCD sputum displayed high activity of neutrophil elastase,and impaired the efferocytosis by healthy donor macrophages. CONCLUSIONS Sputum neutrophils in PCD are dysfunctional and likely contribute to ongoing inflammation in PCD airways. Further research should focus on anti-inflammatory therapies and stimulation of efferocytosis as a strategy to treat PCD. View Publication -
Z. Zhang et al. (dec 2022) Clinical epigenetics 14 1 173Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages.
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However,there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further,it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell,CD4 T,and CD8 T na{\{i}}ve and memory cells states. In the process of na{\"{i}}ve to memory activation across the three lineages we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further in central to effector memory differentiation our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes." View Publication -
S. Trivedi et al. ( 2022) Frontiers in allergy 3 1062412IL-33 induces NF-$\kappa$B activation in ILC2 that can be suppressed by in vivo and ex vivo 17$\beta$-estradiol.
Asthmatic women tend to develop severe airway disease in their reproductive years,and 30%-40% of asthmatic women have peri-menstrual worsening of asthma symptoms. This indicates that fluctuations in ovarian hormones are involved in advancement of asthmatic disease and exacerbation of symptoms. Group 2 innate lymphoid cells,or ILC2,are readily detected in allergic conditions,such as rhinosinusitis,in individuals that develop nasal polyps do to allergen exposures,and in allergic asthma. ILC2 are airway localized immune cells activated by IL-33,an innate cytokine that perpetuates allergic inflammation by driving the production of IL-5 and IL-13. We have previously shown that ILC2 are highly activated in na{\{i}}ve and ovalbumin (OVA) challenged female BALB/c mice in comparison to male mice following stimulation with IL-33. Here we investigated the effect of steady-state ovarian hormones on ILC2 and the NF-$\kappa$B signaling pathway following OVA sensitization and challenge. We found that estrogen-treated ovariectomized mice (OVX-E2) that had been challenged with OVA had reduced IL-5 and IL-13 production by lung ILC2 as compared to lung ILC2 isolated from intact male and female sham-operated controls that had been treated with OVA. ILC2 were isolated from untreated animals and co-cultured ex vivo with and without estrogen plus IL-33. Those estrogen-treated ILC2 similarly produced less IL-5 and IL-13 in comparison to untreated and had reduced NF-$\kappa$B activation. Single-cell RNA sequencing showed that 120 genes were differentially expressed in male and female ILC2 and Nfkb1 was found among top-ranked regulatory interactions. Together these results provide new insight into the suppressive effect of estrogen on ILC2 which may be protective in female asthmatics. Understanding further how estrogen modulates ILC2 may provide therapeutic targets for the treatment of allergic diseases." View Publication -
S. Baron et al. ( 2022) Frontiers in pharmacology 13 1030991Selinexor, a selective inhibitor of nuclear export, inhibits human neutrophil extracellular trap formation in vitro.
Neutrophils are central players in the innate immune system. To protect against invading pathogens,neutrophils can externalize chromatin to create neutrophil extracellular traps (NETs). While NETs are critical to host defense,they also have deleterious effects,and dysregulation of NETs formation has been implicated in autoimmune diseases,atherosclerosis and thrombotic conditions,cancer progression and dissemination,and acute respiratory distress syndrome. Here,we report that selinexor,a first-in-class selective inhibitor of nuclear export approved for the treatment of multiple myeloma and diffuse large B-cell lymphoma,markedly suppressed the release of NETs in vitro. Furthermore,we demonstrate a significant inhibitory effect of selinexor on NETs formation,but not on oxidative burst or enzymatic activities central to NETs release such as neutrophil elastase,myeloperoxidase or peptidyl arginine deiminase type IV. The inhibitory effect of selinexor was demonstrated in neutrophils activated by a variety of NETs-inducers,including PMA,TGF-$\beta$,TNF-$\alpha$ and IL-8. Maximal inhibition of NETs formation was observed using TGF-$\beta$,for which selinexor inhibited NETs release by 61.6%. These findings pave the way to the potential use of selinexor in an effort to reduce disease burden by inhibition of NETs. View Publication -
S.-Y. Liu et al. ( 2022) PloS one 17 12 e0276717Obeticholic acid treatment ameliorates the cardiac dysfunction in NASH mice.
BACKGROUND Suppression of cardiac iinflammasome,which can be inhibited by Farnesoid X receptor (FXR) agonist,can ameliorate cardiac inflammation and fibrosis. Increased cardiac inflammasome decrease the abundance of regulatory T (Treg) cells and exacerbate cardiac dysfunction. Interaction between cardiomyocytes and Treg cells is involved in the development of nonalcoholic steatohepatitis (NASH)-related cardiac dysfunction. AIMS This study evaluates whether the FXR agonist obeticholic acid (OCA) treatment improves NASH-associated cardiac dysfunction. METHODS The in vivo and in vitro mechanisms and effects of two weeks of OCA treatment on inflammasome and Treg dysregulation-related cardiac dysfunction in NASH mice (NASH-OCA) at systemic,tissue and cellular levels were investigated. RESULTS The OCA treatment suppressed the serum and cardiac inflammasome levels,reduced the cardiac infiltrated CD3+ T cells,increased the cardiac Treg-represented anti-inflammatory cytokines (IL-10/IL-10R) and improved cardiac inflammation,fibrosis and function [decreased left ventricle (LV) mass and increased fractional shortening (FS)] in NASH-OCA mice. The percentages of OCA-decreased cardiac fibrosis and OCA-increased FS were positively correlated with the percentage of OCA-increased levels of cardiac FXR and IL-10/IL-10R. In the Treg cells from NASH-OCA mice spleen,in comparison with the Treg cells of the NASH group,higher intracellular FXR but lower inflammasome levels,and more proliferative/active and less apoptotic cells were observed. Incubation of H9c2 cardiomyoblasts with Treg-NASHcm [supernatant of Treg from NASH mice as condition medium (cm)],increased inflammasome levels,decreased the proliferative/active cells,suppressed the intracellular FXR,and downregulated differentiation/contraction marker. The Treg-NASHcm-induced hypocontractility of H9c2 can be attenuated by co-incubation with OCA,and the OCA-related effects were abolished by siIL-10R pretreatment. CONCLUSIONS Chronic FXR activation with OCA is a potential strategy for activating IL-10/IL-10R signalling,reversing cardiac regulatory T cell dysfunction,and improving inflammasome-mediated NASH-related cardiac dysfunction. View Publication -
Y. N. Yoon et al. ( 2022) Frontiers in oncology 12 989190Dynamic alterations in PD-1/PD-L1 expression level and immune cell profiles based on radiation response status in mouse tumor model.
INTRODUCTION Based on the immunologic effects of anti-cancer treatment and their therapeutic implications,we evaluated radiotherapy (RT)-induced dynamic alterations in programmed death-1 (PD-1)/PD ligand-1 (PD-L1) expression profiles. METHODS Local RT with 2 Gy ?— 5 or 7.5 Gy ?— 1 was administered to the CT26 mouse model. Thereafter,tumors were resected and evaluated at the following predefined timepoints according to radiation response status: baseline,early (immediately after RT),middle (beginning of tumor shrinkage),late (stable status with RT effect),and progression (tumor regrowth). PD-1/PD-L1 activity and related immune cell profiles were quantitatively assessed. RESULTS RT upregulated PD-L1 expression in tumor cells from the middle to late phase; however,the levels subsequently decreased to levels comparable to baseline in the progression phase. RT with 2 Gy ?— 5 induced a higher frequency of PD-L1+ myeloid-derived suppressor cells,with a lesser degree of tumor regression,compared to 7.5 Gy. The proportion of PD-1+ and interferon (IFN)-$\gamma$+CD8$\alpha$ T cells continued to increase. The frequency of splenic PD-1+CD8+ T cells was markedly elevated,and was sustained longer with 2 Gy ?— 5. Based on the transcriptomic data,RT stimulated the transcription of immune-related genes,leading to sequentially altered patterns. DISCUSSION The dynamic alterations in PD-1/PD-L1 expression level were observed according to the time phases of tumor regression. This study suggests the influence of tumor cell killing and radiation dosing strategy on the tumor immune microenvironment. View Publication
过滤器
筛选结果
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 269 项目
- 上皮细胞研究 3 项目
- 免疫 1023 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 36 项目
- 嵌合体 30 项目
- 干细胞生物学 2908 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 5 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 200 项目
- 癌症 7 项目
- 神经科学 658 项目
- 移植研究 104 项目
- 类器官 147 项目
- 细胞外囊泡研究 7 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 97 项目
- 细胞系制备 186 项目
- 脐带血库 71 项目
- 药物发现和毒理检测 370 项目
- 血管生成细胞研究 1 项目
- 传染病 45 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 17 项目
- 癌症研究 704 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 8 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 10 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 61 项目
- CellAdhere 2 项目
- ClonaCell 111 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 888 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 30 项目
- IntestiCult 183 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 150 项目
- MethoCult 504 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 86 项目
- RSeT 13 项目
- ReLeSR 6 项目
- RoboSep 48 项目
- RosetteSep 252 项目
- STEMdiff 166 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 250 项目
- TeSR 1546 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
细胞类型
- B 细胞 233 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 173 项目
- PSC衍生 42 项目
- T 细胞 446 项目
- 上皮细胞 124 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 40 项目
- 全血 7 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 89 项目
- 单核细胞 188 项目
- 多能干细胞 1979 项目
- 小胶质细胞 3 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 7 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 130 项目
- 气道细胞 4 项目
- 淋巴细胞 81 项目
- 癌细胞及细胞系 144 项目
- 癌细胞和细胞系 1 项目
- 白细胞 14 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 469 项目
- 神经细胞 15 项目
- 粒细胞及其亚群 103 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 34 项目
- 肠道细胞 87 项目
- 肾细胞 4 项目
- 肿瘤细胞 22 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 100 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 3 项目
- 调节性细胞 11 项目
- 软骨细胞 7 项目
- 造血干/祖细胞 975 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 18 项目
- 间充质干/祖细胞 201 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 146 项目
- 肾脏细胞 6 项目
- CD4+T细胞 105 项目
- CD8+T细胞 87 项目
- PSC衍生上皮细胞 28 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 20 项目
- PSC衍生神经细胞 111 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 18 项目
- 其他T细胞亚型 22 项目
- 呼吸道细胞 86 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 188 项目
- 调节性T细胞 62 项目
- 骨髓瘤 5 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号