Vieillard V et al. (AUG 2005)
Proceedings of the National Academy of Sciences 102 31 10981--86
NK cytotoxicity against CD4+ T cells during HIV-1 infection: A gp41 peptide induces the expression of an NKp44 ligand
HIV infection leads to a state of chronic immune activation and progressive deterioration in immune function,manifested most recognizably by the progressive depletion of CD4+ T cells. A substantial percentage of natural killer (NK) cells from patients with HIV infection are activated and express the natural cytotoxicity receptor (NCR) NKp44. Here we show that a cellular ligand for NKp44 (NKp44L) is expressed during HIV-1 infection and is correlated with both the progression of CD4+ T cell depletion and the increase of viral load. CD4+ T cells expressing this ligand are highly sensitive to the NK lysis activity mediated by NKp44+ NK cells. The expression of NKp44L is induced by the linear motif NH2-SWSNKS-COOH of the HIV-1 envelope gp41 protein. This highly conserved motif appears critical to the sharp increase in NK lysis of CD4+ T cells from HIV-infected patients. These studies strongly suggest that induction of NKp44L plays a key role in the lysis of CD4+ T cells by activated NK cells in HIV infection and consequently provide a framework for considering how HIV-1 may use NK cell immune surveillance to trigger CD4+ T cells. Understanding this mechanism may help to develop future therapeutic strategies and vaccines against HIV-1 infection.
View Publication
文献
Zhang Q et al. (AUG 2005)
Infection and immunity 73 8 5166--72
Production and characterization of monoclonal antibodies against Enterocytozoon bieneusi purified from rhesus macaques.
Enterocytozoon bieneusi spores derived from rhesus macaque feces were purified by serial salt-Percoll-sucrose-iodixanol centrifugation,resulting in two bands with different specific densities of 95.6% and 99.5% purity and with a recovery efficiency of 10.8%. An ultrastructural examination revealed typical E. bieneusi spores. Twenty-six stable hybridomas were derived from BALB/c mice immunized with spores and were cloned twice by limiting dilution or growth on semisolid medium. Four monoclonal antibodies (MAbs),reacting exclusively with spores,were further characterized. These MAbs specifically reacted with spores present in stools of humans and macaques,as visualized by immunofluorescence,and with spore walls,as visualized by immunoelectron microscopy. A blocking enzyme-linked immunosorbent assay and Western blotting revealed that the epitope recognized by 8E2 was different from those recognized by 7G2,7H2,and 12G8,which identified the same 40-kDa protein. These MAbs will be valuable tools for diagnostics,for epidemiological investigations,for host-pathogen interaction studies,and for comparative genomics and proteomics.
View Publication
文献
Li J et al. (MAR 2005)
Clinical Cancer Research 11 6 2195--2204
Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases
PURPOSE: The PRL-3 mRNA is consistently elevated in metastatic samples derived from colorectal cancers. We sought to generate a specific PRL-3 monoclonal antibody (mAb) that might serve as a potential diagnostic marker for colorectal cancer metastasis. EXPERIMENTAL DESIGN: PRL-3 is one of three members (PRL-1,PRL-2,and PRL-3) in a unique protein-tyrosine phosphatase family. Because the three PRLs are 76% to 87% identical in their amino acid sequences,it poses a great challenge to obtain mAbs that are specific for respective phosphatase of regenerating liver (PRL) but not for the other two in the family. We screened over 1,400 hybridoma clones to generate mAbs specific to each PRL member. RESULTS: We obtained two hybridoma clones specifically against PRL-3 and another two clones specifically against PRL-1. These antibodies had been evaluated by several critical tests to show their own specificities and applications. Most importantly,the PRL-3 mAbs were assessed on 282 human colorectal tissue samples (121 normal,17 adenomas,and 144 adenocarcinomas). PRL-3 protein was detected in 11% of adenocarcinoma samples. The PRL-3- and PRL-1-specific mAbs were further examined on 204 human multiple cancer tissues. The differential expressions of PRL-3 and PRL-1 confirmed the mAbs' specificity. CONCLUSIONS: Using several approaches,we show that PRL-3- or PRL-1-specific mAbs react only to their respective antigen. The expression of PRL-3 in textgreater10% of primary colorectal cancer samples indicates that PRL-3 may prime the metastatic process. These mAbs will be useful as markers in clinical diagnosis for assessing tumor aggressiveness.
View Publication
文献
Yuki N et al. (AUG 2004)
Proceedings of the National Academy of Sciences 101 31 11404--09
Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome
Molecular mimicry between microbial and self-components is postulated as the mechanism that accounts for the antigen and tissue specificity of immune responses in postinfectious autoimmune diseases. Little direct evidence exists,and research in this area has focused principally on T cell-mediated,antipeptide responses,rather than on humoral responses to carbohydrate structures. Guillain-Barré syndrome,the most frequent cause of acute neuromuscular paralysis,occurs 1-2 wk after various infections,in particular,Campylobacter jejuni enteritis. Carbohydrate mimicry [Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-] between the bacterial lipooligosaccharide and human GM1 ganglioside is seen as having relevance to the pathogenesis of Guillain-Barré syndrome,and conclusive evidence is reported here. On sensitization with C. jejuni lipooligosaccharide,rabbits developed anti-GM1 IgG antibody and flaccid limb weakness. Paralyzed rabbits had pathological changes in their peripheral nerves identical with those present in Guillain-Barré syndrome. Immunization of mice with the lipooligosaccharide generated a mAb that reacted with GM1 and bound to human peripheral nerves. The mAb and anti-GM1 IgG from patients with Guillain-Barré syndrome did not induce paralysis but blocked muscle action potentials in a muscle-spinal cord coculture,indicating that anti-GM1 antibody can cause muscle weakness. These findings show that carbohydrate mimicry is an important cause of autoimmune neuropathy.
View Publication
文献
Berry JD et al. (SEP 2004)
Journal of Virological Methods 120 1 87--96
Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus
There is a global need to elucidate protective antigens expressed by the SARS-coronavirus (SARS-CoV). Monoclonal antibody reagents that recognise specific antigens on SARS-CoV are needed urgently. In this report,the development and immunochemical characterisation of a panel of murine monoclonal antibodies (mAbs) against the SARS-CoV is presented,based upon their specificity,binding requirements,and biological activity. Initial screening by ELISA,using highly purified virus as the coating antigen,resulted in the selection of 103 mAbs to the SARS virus. Subsequent screening steps reduced this panel to seventeen IgG mAbs. A single mAb,F26G15,is specific for the nucleoprotein as seen in Western immunoblot while five other mAbs react with the Spike protein. Two of these Spike-specific mAbs demonstrate the ability to neutralise SARS-CoV in vitro while another four Western immunoblot-negative mAbs also neutralise the virus. The utility of these mAbs for diagnostic development is demonstrated. Antibody from convalescent SARS patients,but not normal human serum,is also shown to specifically compete off binding of mAbs to whole SARS-CoV. These studies highlight the importance of using standardised assays and reagents. These mAbs will be useful for the development of diagnostic tests,studies of SARS-CoV pathogenesis and vaccine development. ?? 2004 Elsevier B.V. All rights reserved.
View Publication
文献
Coffman KT et al. (NOV 2003)
Cancer Research 63 22 7907--12
Differential EphA2 epitope display on normal versus malignant cells.
The EphA2 receptor tyrosine kinase is overexpressed in many different types of human cancers where it functions as a powerful oncoprotein. Dramatic changes in the subcellular localization and function of EphA2 have also been linked with cancer,and in particular,unstable cancer cell-cell contacts prevent EphA2 from stably binding its ligand on the surface of adjoining cells. This change is important in light of evidence that ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and invasiveness and also induce EphA2 degradation. On the basis of these properties,we have begun to target EphA2 on tumor cells using agonistic antibodies,which mimic the consequences of ligand binding. In our present study,we show that a subset of agonistic EphA2 antibodies selectively bind epitopes on malignant cells,which are not available on nontransformed epithelial cells. We also show that such epitopes arise from differential cell-cell adhesions and that the stable intercellular junctions of nontransformed epithelial cells occlude the binding site for ligand,as well as this subset of EphA2 antibodies. Finally,we demonstrate that antibody targeting of EphA2 decreases tumor cell growth as measured using xenograft tumor models and found that the mechanism of antibody action relates to EphA2 protein degradation in vivo. Taken together,these results suggest new opportunities for therapeutic targeting of the large number of different cancers that express EphA2 in a manner that could minimize potential toxicities to normal cells.
View Publication
文献
Hase H et al. (MAR 2004)
Blood 103 6 2257--65
BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex.
The tumor necrosis factor (TNF)-like ligand BAFF/BLyS (B-cell activating factor of the TNF family/B-lymphocyte stimulator) is a potent B-cell survival factor,yet its functional relationship with other B-cell surface molecules such as CD19 and CD40 is poorly understood. We found that follicular dendritic cells (FDCs) in human lymph nodes expressed BAFF abundantly. BAFF up-regulated a B cell-specific transcription factor Pax5/BSAP (Pax5/B cell-specific activator protein) activity and its target CD19,a major component of the B-cell coreceptor complex,and synergistically enhanced CD19 phosphorylation by B-cell antigen receptor (BCR). BAFF further enhanced B-cell proliferation,immunoglobulin G (IgG) production,and reactivity to CD154 by BCR/CD19 coligation and interleukin-15 (IL-15). Our results suggest that BAFF may play an important role in FDC-B-cell interactions through the B-cell coreceptor complex and a possibly sequential link between the T cell-independent and -dependent B-cell responses in the germinal centers.
View Publication
文献
Lim Y-P et al. (SEP 2003)
The Journal of infectious diseases 188 6 919--26
Correlation between mortality and the levels of inter-alpha inhibitors in the plasma of patients with severe sepsis.
Inter-alpha inhibitor protein (IalphaIp) is an endogenous serine protease inhibitor in human plasma. Circulating IalphaIp levels were lower in 51 patients with severe sepsis than in healthy volunteers. Mean levels were 688+/-295 mg/L in patients with severe sepsis who survived (n=32),486+/-193 mg/L in patients with sepsis who died (n=19),and 872+/-234 mg/L in control subjects (n=25). IalphaIp levels were lower in patients with shock versus those without (540+/-246 [n=33] vs. 746+/-290 [n=18] mg/L; P=.0102). IalphaIp levels were inversely correlated with 28-day mortality rates and Acute Physiology and Chronic Health Evaluation II scores and directly correlated with antithrombin III,protein C,and protein S levels. The administration of IalphaIp (30 mg/kg body weight intravenously) increased the 50% lethal dose in mice by 100-fold after an intravenous challenge of Escherichia coli. Thus,human IalphaIp may be a useful predictive marker and potential therapeutic agent in sepsis.
View Publication
文献
Jones DC et al. (JUL 2003)
Journal of immunology 171 1 196--203
Peroxisome proliferator-activated receptor alpha negatively regulates T-bet transcription through suppression of p38 mitogen-activated protein kinase activation.
Expression of the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in resting lymphocytes was recently established,although the physiologic role(s) played by this nuclear hormone receptor in these cell types remains unresolved. In this study,we used CD4(+) T cells isolated from PPARalpha(-/-) and wild-type mice,as well as cell lines that constitutively express PPARalpha,in experiments designed to evaluate the role of this hormone receptor in the regulation of T cell function. We report that activated CD4(+) T cells lacking PPARalpha produce increased levels of IFN-gamma,but significantly lower levels of IL-2 when compared with activated wild-type CD4(+) T cells. Furthermore,we demonstrate that PPARalpha regulates the expression of these cytokines by CD4(+) T cells in part,through its ability to negatively regulate the transcription of T-bet. The induction of T-bet expression in CD4(+) T cells was determined to be positively influenced by p38 mitogen-activated protein (MAP) kinase activation,and the presence of unliganded PPARalpha effectively suppressed the phosphorylation of p38 MAP kinase. The activation of PPARalpha with highly specific ligands relaxed its capacity to suppress p38 MAP kinase phosphorylation and promoted T-bet expression. These results demonstrate a novel DNA-binding independent and agonist-controlled regulatory influence by the nuclear hormone receptor PPARalpha.
View Publication
文献
Blake RC et al. (JAN 2003)
Biochemistry 42 2 497--508
Allosteric binding properties of a monoclonal antibody and its Fab fragment.
Detailed equilibrium binding studies were conducted on a monoclonal antibody directed against Pb(II) complexed with a protein conjugate of diethylenetriaminepentaacetic acid (DTPA). Binding curves obtained with DTPA and a cyclohexyl derivative of DTPA in the presence and absence of metal ions were consistent with the anticipated one-site homogeneous binding model. Binding curves obtained with aminobenzyl-DTPA or its complexes with Ca(II),Sr(II),and Ba(II) were highly sigmoidal,characterized by Hill coefficients of 2.3-6.5. Binding curves obtained with the Pb(II) and In(III) complexes of aminobenzyl-DTPA were hyperbolic,but in each case the apparent affinity of the antibody for the chelator-metal complex was higher in the presence of excess chelator than it was in the presence of excess metal ion. In the presence of excess chelator,the equilibrium dissociation constant for the binding of aminobenzyl-DTPA-Pb(II) to the antibody was 9.5 x 10(-)(10) M. Binding curves obtained with the Hg(II) and Cd(II) complexes of aminobenzyl-DTPA were biphasic,indicative of negative cooperativity. Further binding studies demonstrated that aminobenzyl-DTPA-Hg(II) opposed the binding of additional chelator-metal complexes to the antibody more strongly than did aminobenzyl-DTPA-Cd(II). The Fab fragment differed from the intact antibody only in that the apparent affinity of the Fab was generally lower for a given chelator-metal complex. These data are interpreted in terms of a model in which (i) aminobenzyl-DTPA and its complexes bind both to the antigen binding site and to multiple charged sites on the surface of the compact immunoglobulin; and (ii) the bound,highly charged ligands interact in a complicated fashion through the apolar core of the folded antibody.
View Publication
文献
Chang Q et al. (SEP 2002)
Infection and Immunity 70 9 4977--86
Structure-function relationships for human antibodies to pneumococcal capsular polysaccharide from transgenic mice with human immunoglobulin Loci.
To investigate the influence of antibody structure and specificity on antibody efficacy against Streptococcus pneumoniae,human monospecific antibodies (MAbs) to serotype 3 pneumococcal capsular polysaccharide (PPS-3) were generated from transgenic mice reconstituted with human immunoglobulin loci (XenoMouse mice) vaccinated with a PPS-3-tetanus toxoid conjugate and their molecular genetic structures,epitope specificities,and protective efficacies in normal and complement-deficient mice were determined. Nucleic acid sequence analysis of three MAbs (A7,1A2,and 7C5) revealed that they use two different V(H)3 genes (A7 and 1A2 both use V3-15) and three different V(kappa) gene segments. The MAbs were found to have similar affinities for PPS-3 but different epitope specificities and CDR3 regions. Both A7 and 7C5 had a lysine at the V(H)-D junction,whereas 1A2 had a threonine. Challenge experiments with serotype 3 S. pneumoniae in BALB/c mice revealed that both 10- and 1- micro g doses of A7 and 7C5 were protective,while only a 10- micro g dose of 1A2 was protective. Both A7 and 7C5 were also protective in mice lacking either an intact alternative (FB(-/-)) or classical (C4(-/-)) complement pathway,but 1A2 was not protective in either strain. Our data suggest that PPS-3 consists of epitopes that can elicit both highly protective and less protective antibodies and that the superior efficacies of certain antibodies may be a function of their structures and/or specificities. Further investigation of relationships between structure,specificity,and efficacy for defined MAbs to PPS may identify antibody features that might be useful surrogates for antibody (and vaccine) efficacy.
View Publication
文献
Dadaglio G et al. (MAR 2002)
Journal of immunology (Baltimore,Md. : 1950) 168 5 2219--24
Efficient in vivo priming of specific cytotoxic T cell responses by neonatal dendritic cells.
In early life,a high susceptibility to infectious diseases as well as a poor capacity to respond to vaccines are generally observed as compared with observations in adults. The mechanisms underlying immune immaturity have not been fully elucidated and could be due to the immaturity of the T/B cell responses and/or to a defect in the nature and quality of Ag presentation by the APC. This prompted us to phenotypically and functionally characterize early life murine dendritic cells (DC) purified from spleens of 7-day-old mice. We showed that neonatal CD11c(+) DC express levels of costimulatory molecules and MHC molecules similar to those of adult DC and are able to fully maturate after LPS activation. Furthermore,we demonstrated that neonatal DC can efficiently take up,process,and present Ag to T cells in vitro and induce specific CTL responses in vivo. Although a reduced number of these cells was observed in the spleen of neonatal mice as compared with adults,this study clearly shows that neonatal DC have full functional capacity and may well prime Ag-specific naive T cells in vivo.
View Publication