Development of human monoclonal antibodies against respiratory syncytial virus using a high efficiency human hybridoma technique.
Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules,and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past,however,isolation of human monoclonal antibodies was difficult and inefficient. Here,we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines,especially lines secreting neutralizing antibodies.
View Publication
文献
Lee WT et al. (DEC 2016)
Developmental & Comparative Immunology 65 114--123
Identification of secreted and membrane-bound bat immunoglobulin using a Microchiropteran-specific mouse monoclonal antibody
Bat immunity has received increasing attention because some bat species are being decimated by the fungal disease,White Nose Syndrome,while other species are potential reservoirs of zoonotic viruses. Identifying specific immune processes requires new specific tools and reagents. In this study,we describe a new mouse monoclonal antibody (mAb) reactive with Eptesicus fuscus immunoglobulins. The epitope recognized by mAb BT1-4F10 was localized to immunoglobulin light (lambda) chains; hence,the mAb recognized serum immunoglobulins and B lymphocytes. The BT1-4F10 epitope appeared to be restricted to Microchiropteran immunoglobulins and absent from Megachiropteran immunoglobulins. Analyses of sera and other E. fuscus fluids showed that most,if not all,secreted immunoglobulins utilized lambda light chains. Finally,mAb BT1-4F10 permitted the identification of B cell follicles in splenic white pulp. This Microchiropteran-specific mAb has potential utility in seroassays; hence,this reagent may have both basic and practical applications for studying immune process.
View Publication
文献
Yew CW and Tan YJ ( 2016)
1426 225--33
Generation of mouse monoclonal antibodies specific to Chikungunya virus using ClonaCell-HY hybridoma cloning kit
Monoclonal antibodies offer high specificity and this makes it an important tool for molecular biology,biochemistry and medicine. Typically,monoclonal antibodies are generated by fusing mouse spleen cells that have been immunized with the desired antigen with myeloma cells to create immortalized hybridomas. Here,we describe the generation of monoclonal antibodies that are specific to Chikungunya virus using ClonaCell-HY system.
View Publication
文献
Cindric Vranesic A et al. (MAY 2016)
Human Molecular Genetics May 11 ddw140
Characterization of SKAP/kinastrin isoforms: the N-terminus defines tissue specificity and Pontin binding
Small Kinetochore-Associated Protein (SKAP)/Kinastrin is a multifunctional protein with proposed roles in mitosis,apoptosis and cell migration. Exact mechanisms underlying its activities in these cellular processes are not completely understood. SKAP is predicted to have different isoforms,however,previous studies did not differentiate between them. Since distinct molecular architectures of protein isoforms often influence their localization and functions,this study aimed to examine the expression profile and functional differences between SKAP isoforms in human and mouse. Analyses of various human tissues and cells of different origin by RT-PCR,and by Western blotting and immunocytochemistry applying newly generated anti-SKAP monoclonal antibodies revealed that human SKAP exists in two protein isoforms: ubiquitously expressed SKAP16 and testis/sperm-specific SKAP1. In mouse,SKAP1 expression is detectable in testis at 4 weeks postnatally,when the first wave of spermatogenesis in mice is complete and the elongated spermatids are present in the testes. Furthermore,we identified Pontin as a new SKAP1 interaction partner. SKAP1 and Pontin co-localized in the flagellar region of human sperm suggesting a functional relevance for SKAP1-Pontin interaction in sperm motility. Since most previous studies on SKAP were performed with the testis-specific isoform SKAP1,our findings provide a new basis for future studies on the role of SKAP in both human somatic cells and male germ cells,including studies on male fertility.
View Publication
文献
Sun Y et al. (MAY 2016)
mBio 7 2 e00465--16
Deletion of a Yci1 Domain Protein of Candida albicans Allows Homothallic Mating in MTL Heterozygous Cells
It has been proposed that the ancestral fungus was mating competent and homothallic. However,many mating-competent fungi were initially classified as asexual because their mating capacity was hidden behind layers of regulation. For efficient in vitro mating,the essentially obligate diploid ascomycete pathogen Candida albicans has to change its mating type locus from heterozygous MTL a /α to homozygous MTL a / a or MTL α/α and then undergo an environmentally controlled epigenetic switch to the mating-competent opaque form. These requirements greatly reduce the potential for C. albicans mating. Deletion of the Yci1 domain gene OFR1 bypasses the need for C. albicans cells to change the mating type locus from heterozygous to homozygous prior to switching to the opaque form and mating and allows homothallic mating of MTL heterozygous strains. This bypass is carbon source dependent and does not occur when cells are grown on glucose. Transcriptional profiling of ofr1 mutant cells shows that in addition to regulating cell type and mating circuitry,Ofr1 is needed for proper regulation of histone and chitin biosynthesis gene expression. It appears that OFR1 is a key regulator in C. albicans and functions in part to maintain the cryptic mating phenotype of the pathogen.
View Publication
文献
Eyford BA et al. (APR 2016)
PLOS Neglected Tropical Diseases 10 4 e0004510
Characterization of Calflagin, a Flagellar Calcium-Binding Protein from Trypanosoma congolense
BACKGROUND Identification of species-specific trypanosome molecules is important for laboratory- and field-based research into epidemiology and disease diagnosis. Although Trypanosoma congolense is the most important trypanosome pathogen of cattle in Africa,no species-specific molecules found in infective bloodstream forms (BSF) of the parasites have been identified,thus limiting development of diagnostic tests. METHODS Immuno-mass spectrometric methods were used to identify a protein that is recognized by a T. congolense-specific monoclonal antibody (mAb) Tc6/42.6.4. The identified molecule was expressed as a recombinant protein in E. coli and was tested in several immunoassays for its ability to interact with the mAb. The three dimensional structure of the protein was modeled and compared to crystal- and NMR-structures of the homologous proteins from T. cruzi and T. brucei respectively,in order to examine structural differences leading to the different immunoreactivity of the T. congolense molecule. Enzyme-linked immunosorbent assays (ELISA) were used to measure antibodies produced by trypanosome-infected African cattle in order to assess the potential for use of T. congolense calflagin in a serodiagnostic assay. RESULTS The antigen recognized by the T. congolense-specific mAb Tc6/42.6.4 was identified as a flagellar calcium-binding protein,calflagin. The recombinant molecule showed immunoreactivity with the T. congolense-specific mAb confirming that it is the cognate antigen. Immunofluorescence experiments revealed that Ca2+ modulated the localization of the calflagin molecule in trypanosomes. Structural modelling and comparison with calflagin homologues from other trypanosomatids revealed four non-conserved regions on the surface of the T. congolense molecule that due to differences in surface chemistry and structural topography may form species-specific epitopes. ELISAs using the recombinant calflagin as antigen to detect antibodies in trypanosome-infected cattle showed that the majority of cattle had antibody responses. Area under the Receiver-Operating Characteristic (ROC) curves,associated with host IgG and IgM,were calculated to be 0.623 and 0.709 respectively,indicating a positive correlation between trypanosome infection and the presence of anti-calflagin antibodies. CONCLUSIONS While calflagin is conserved among different species of African trypanosomes,our results show that T. congolense calflagin possesses unique epitopes that differentiate this protein from homologues in other trypanosome species. MAb Tc6/42.6.4 has clear utility as a laboratory tool for identifying T. congolense. T. congolense calflagin has potential as a serodiagnostic antigen and should be explored further for its utility in antigen-detection assays for diagnosis of cattle infections.
View Publication
文献
Fukuma A et al. (APR 2016)
PLOS Neglected Tropical Diseases 10 4 e0004595
Severe fever with thrombocytopenia syndrome virus antigen detection using monoclonal antibodies to the nucleocapsid protein
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate,and is caused by the SFTS virus (SFTSV). SFTS is endemic to China,South Korea,and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas. METHODOLOGY/PRINCIPAL FINDINGS We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies,respectively. The Ag-capture system was capable of detecting at least 350-1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (textgreater105 copies/ml) showed a positive reaction in the Ag-capture ELISA,whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (textless105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples,9 (75%) were positive for IgG antibodies against SFTSV. CONCLUSIONS The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia.
View Publication
文献
Shiozawa T et al. (FEB 2016)
Virchows Archiv 468 2 179--90
Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma
Although embryonal proteins have been used as tumor marker,most are not useful for detection of early malignancy. In the present study,we developed mouse monoclonal antibodies against fetal lung of miniature swine,and screened them to find an embryonal protein that is produced at the early stage of malignancy,focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimethylarginine dimethylaminohydrolase 2 (DDAH2),an enzyme known for antiatherosclerotic activity. DDAH2 was found to be expressed in fibroblasts of stroma of malignancies,with higher expression in minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma than in adenocarcinoma in situ (AIS). Moreover,tumors with high stromal expression of DDAH2 had a poorer prognosis than those without. In vitro analysis showed that DDAH2 increases expression of endothelial nitric oxide synthase (eNOS),inducing proliferation and capillary-like tube formation of vascular endothelial cells. In resected human tissues,eNOS also showed higher expression in invasive adenocarcinoma than in AIS and normal lung,similarly to DDAH2. Our data indicate that expression of DDAH2 is associated with invasiveness of lung adenocarcinoma via tumor angiogenesis. DDAH2 expression might be a prognostic factor in lung adenocarcinoma.
View Publication
文献
Johnston AJ et al. (SEP 2015)
Cell 162 6 1365--78
Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival
Summary The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14,when expressed in tumors,causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor,rather than host,is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia,thereby extending lifespan and improving quality of life for cancer patients.
View Publication
文献
Robinson M-P et al. ( 2015)
Nature Communications 6 Aug 27 8072
Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.
Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here,we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains,both lacking canonical export signals,are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs-named 'cyclonals'-effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.
View Publication
文献
Lam S et al. (NOV 2015)
mAbs 7 6 1178--94
A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis
Chikungunya virus (CHIKV) is a medically important human viral pathogen that causes Chikungunya fever accompanied with debilitating and persistent joint pain. Host-elicited or passively-transferred monoclonal antibodies (mAb) are essential mediators of CHIKV clearance. Therefore,this study aimed to generate and characterize a panel of mAbs for their neutralization efficacy against CHIKV infection in a cell-based and murine model. To evaluate their antigenicity and neutralization profile,indirect enzyme-linked immunosorbent assay (ELISA),an immunofluorescence assay (IFA) and a plaque reduction neutralization test were performed on mAbs of IgM isotype. CHIKV escape mutants against mAb 3E7b neutralization were generated,and reverse genetics techniques were then used to create an infectious CHIKV clone with a single mutation. 3E7b was also administered to neonate mice prior or after CHIKV infection. The survival rate,CHIKV burden in tissues and histopathology of the limb muscles were evaluated. Both IgM 3E7b and 8A2c bind strongly to native CHIKV surface and potently neutralize CHIKV replication. Further analyses of 3E7b binding and neutralization of CHIKV single-mutant clones revealed that N218 of CHIKV E2 protein is a potent neutralizing epitope. In a pre-binding neutralization assay,3E7b blocks CHIKV attachment to permissive cells,possibly by binding to the surface-accessible E2-N218 residue. Prophylactic administration of 3E7b to neonate mice markedly reduced viremia and protected against CHIKV pathogenesis in various mice tissues. Given therapeutically at 4 h post-infection,3E7b conferred 100% survival rate and similarly reduced CHIKV load in most mice tissues except the limb muscles. Collectively,these findings highlight the usefulness of 3E7b for future prophylactic or epitope-based vaccine design.
View Publication
文献
Laguna M et al. (AUG 2015)
Sensors 15 8 19819--29
Antigen-antibody affinity for dry eye biomarkers by label free biosensing. Comparison with the ELISA technique
The specificity and affinity of antibody-antigen interactions is a fundamental way to achieve reliable biosensing responses. Different proteins involved with dry eye dysfunction: ANXA1,ANXA11,CST4,PRDX5,PLAA and S100A6; were validated as biomarkers. In this work several antibodies were tested for ANXA1,ANXA11 and PRDX5 to select the best candidates for each biomarker. The results were obtained by using Biophotonic Sensing Cells (BICELLs) as an efficient methodology for label-free biosensing and compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) technique.
View Publication