Megakaryocyte-matrix interaction within bone marrow: new roles for fibronectin and factor XIII-A.
The mechanisms by which megakaryocytes (MKs) differentiate and release platelets into the circulation are not well understood. However,growing evidence indicates that a complex regulatory mechanism involving MK-matrix interactions may contribute to the quiescent or permissive microenvironment related to platelet release within bone marrow. To address this hypothesis,in this study we demonstrate that human MKs express and synthesize cellular fibronectin (cFN) and transglutaminase factor XIII-A (FXIII-A). We proposed that these 2 molecules are involved in a new regulatory mechanism of MK-type I collagen interaction in the osteoblastic niche. In particular,we demonstrate that MK adhesion to type I collagen promotes MK spreading and inhibits pro-platelet formation through the release and relocation to the plasma membrane of cFN. This regulatory mechanism is dependent on the engagement of FN receptors at the MK plasma membrane and on transglutaminase FXIII-A activity. Consistently,the same mechanism regulated the assembly of plasma FN (pFN) by adherent MKs to type I collagen. In conclusion,our data extend the knowledge of the mechanisms that regulate MK-matrix interactions within the bone marrow environment and could serve as an important step for inquiring into the origins of diseases such as myelofibrosis and congenital thrombocytopenias that are still poorly understood.
View Publication
文献
Lymperi S et al. (FEB 2011)
Blood 117 5 1540--9
Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo.
Osteoblasts play a crucial role in the hematopoietic stem cell (HSC) niche; however,an overall increase in their number does not necessarily promote hematopoiesis. Because the activity of osteoblasts and osteoclasts is coordinately regulated,we hypothesized that active bone-resorbing osteoclasts would participate in HSC niche maintenance. Mice treated with bisphosphonates exhibited a decrease in proportion and absolute number of Lin(-)cKit(+)Sca1(+) Flk2(-) (LKS Flk2(-)) and long-term culture-initiating cells in bone marrow (BM). In competitive transplantation assays,the engraftment of treated BM cells was inferior to that of controls,confirming a decrease in HSC numbers. Accordingly,bisphosphonates abolished the HSC increment produced by parathyroid hormone. In contrast,the number of colony-forming-unit cells in BM was increased. Because a larger fraction of LKS in the BM of treated mice was found in the S/M phase of the cell cycle,osteoclast impairment makes a proportion of HSCs enter the cell cycle and differentiate. To prove that HSC impairment was a consequence of niche manipulation,a group of mice was treated with bisphosphonates and then subjected to BM transplantation from untreated donors. Treated recipient mice experienced a delayed hematopoietic recovery compared with untreated controls. Our findings demonstrate that osteoclast function is fundamental in the HSC niche.
View Publication
文献
Chigaev A et al. (FEB 2011)
The Journal of biological chemistry 286 7 5455--63
Discovery of very late antigen-4 (VLA-4, alpha4beta1 integrin) allosteric antagonists.
Integrins are cell adhesion receptors that mediate cell-to-cell,or cell-to-extracellular matrix adhesion. They represent an attractive target for treatment of multiple diseases. Two classes of small molecule integrin inhibitors have been developed. Competitive antagonists bind directly to the integrin ligand binding pocket and thus disrupt the ligand-receptor interaction. Allosteric antagonists have been developed primarily for α(L)β(2)- integrin (LFA-1,lymphocyte function-associated antigen-1). Here we present the results of screening the Prestwick Chemical Library using a recently developed assay for the detection of α(4)β(1)-integrin allosteric antagonists. Secondary assays confirmed that the compounds identified: 1) do not behave like competitive (direct) antagonists; 2) decrease ligand binding affinity for VLA-4 ∼2 orders of magnitude; 3) exhibit antagonistic properties at low temperature. In a cell based adhesion assay in vitro,the compounds rapidly disrupted cellular aggregates. In accord with reports that VLA-4 antagonists in vivo induce mobilization of hematopoietic progenitors into the peripheral blood,we found that administration of one of the compounds significantly increased the number of colony-forming units in mice. This effect was comparable to AMD3100,a well known progenitor mobilizing agent. Because all the identified compounds are structurally related,previously used,or currently marketed drugs,this result opens a range of therapeutic possibilities for VLA-4-related pathologies.
View Publication
文献
Figueroa ME et al. (DEC 2010)
Cancer cell 18 6 553--67
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation.
Cancer-associated IDH mutations are characterized by neomorphic enzyme activity and resultant 2-hydroxyglutarate (2HG) production. Mutational and epigenetic profiling of a large acute myeloid leukemia (AML) patient cohort revealed that IDH1/2-mutant AMLs display global DNA hypermethylation and a specific hypermethylation signature. Furthermore,expression of 2HG-producing IDH alleles in cells induced global DNA hypermethylation. In the AML cohort,IDH1/2 mutations were mutually exclusive with mutations in the α-ketoglutarate-dependent enzyme TET2,and TET2 loss-of-function mutations were associated with similar epigenetic defects as IDH1/2 mutants. Consistent with these genetic and epigenetic data,expression of IDH mutants impaired TET2 catalytic function in cells. Finally,either expression of mutant IDH1/2 or Tet2 depletion impaired hematopoietic differentiation and increased stem/progenitor cell marker expression,suggesting a shared proleukemogenic effect.
View Publication
文献
England SJ et al. (MAR 2011)
Blood 117 9 2708--17
Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus.
In the hematopoietic hierarchy,only stem cells are thought to be capable of long-term self-renewal. Erythroid progenitors derived from fetal or adult mammalian hematopoietic tissues are capable of short-term,or restricted (10(2)- to 10(5)-fold),ex vivo expansion in the presence of erythropoietin,stem cell factor,and dexamethasone. Here,we report that primary erythroid precursors derived from early mouse embryos are capable of extensive (10(6)- to 10(60)-fold) ex vivo proliferation. These cells morphologically,immunophenotypically,and functionally resemble proerythroblasts,maintaining both cytokine dependence and the potential,despite prolonged culture,to generate enucleated erythrocytes after 3-4 maturational cell divisions. This capacity for extensive erythroblast self-renewal is temporally associated with the emergence of definitive erythropoiesis in the yolk sac and its transition to the fetal liver. In contrast,hematopoietic stem cell-derived definitive erythropoiesis in the adult is associated almost exclusively with restricted ex vivo self-renewal. Primary primitive erythroid precursors,which lack significant expression of Kit and glucocorticoid receptors,lack ex vivo self-renewal capacity. Extensively self-renewing erythroblasts,despite their near complete maturity within the hematopoietic hierarchy,may ultimately serve as a renewable source of red cells for transfusion therapy.
View Publication
文献
Zhang L-Z et al. (JUN 2010)
Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi 31 6 398--402
[In vitro effects of anti-CD44 monoclonal antibody on the adhesion and migration of chronic myeloid leukemia stem cells.]
OBJECTIVE: To explore the effects of anti-CD44 monoclonal antibody-IM7 on the in vitro adhesion and migration of chronic myeloid leukemia stem cell (CML-LSC) and its mechanism. METHODS: CD34(+)CD38(-)CD123(+) leukemic stem cells (LSC) from 20 newly-diagnosed chronic myeloid leukemia (CML) patients BM cells and CD34(+)CD38(-) hematopoietic stem cells (HSC) from 20 full-term newborn cord blood cells were isolated with EasySep(TM) magnet beads. The CD44 expression of the LSC and HSC was detected by flow cytometry (FCM),and the adhesion and migration ability of the LSC and HSC pre- and post-incubated with IM7 in vitro by MTT assay and transendothelial migration assay,respectively. RESULTS: (1) After incubated with IM7,the LSC and HSC CD44 expression rates were (86.60 ± 2.10)% vs. (25.40 ± 1.70)% (P textless 0.05),respectively. (2) The adhesive ability of the LSC to endothelial cells was decreased markedly after incubated with IM7,the OD value (A(570)) changing from pre-incubation of (0.62 ± 0.11) to post-incubation of (0.34 ± 0.07),while there was little change of A(570) in the HSC group. (3) The migration ability of the LSC group was inhibited evidently after incubated with IM7,the inhibition rate being 46% ∼ 63%,while little change of that in HSC group was detected. (4) The adhesive ability of the LSC group to marrow stromal cells was decreased markedly after incubated with IM7,while little change was found in that of HSC group. CONCLUSION: The anti-CD44 monoclonal antibody-IM7 can effectively inhibit the adhesion and migration abilities of the LSC in vitro,which might provide a theoretical evidence for targeting therapy.
View Publication
文献
Rosenberg S et al. (JAN 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 1 203--13
FADD deficiency impairs early hematopoiesis in the bone marrow.
Signal transduction mediated by Fas-associated death domain protein (FADD) represents a paradigm of coregulation of apoptosis and cellular proliferation. During apoptotic signaling induced by death receptors including Fas,FADD is required for the recruitment and activation of caspase 8. In addition,a death receptor-independent function of FADD is essential for embryogenesis. In previous studies,FADD deficiency in embryonic stem cells resulted in a complete lack of B cells and dramatically reduced T cell numbers,as shown by Rag1(-/-) blastocyst complementation assays. However,T-specific FADD-deficient mice contained normal numbers of thymocytes and slightly reduced peripheral T cell numbers,whereas B cell-specific deletion of FADD led to increased peripheral B cell numbers. It remains undetermined what impact an FADD deficiency has on hematopoietic stem cells and progenitors. The current study analyzed the effect of simultaneous deletion of FADD in multiple cell types,including bone marrow cells,by using the IFN-inducible Mx1-cre transgene. The resulting FADD mutant mice did not develop lymphoproliferation diseases,unlike Fas-deficient mice. Instead,a time-dependent depletion of peripheral FADD-deficient lymphocytes was observed. In the bone marrow,a lack of FADD led to a dramatic decrease in the hematopoietic stem cells and progenitor-enriched population. Furthermore,FADD-deficient bone marrow cells were defective in their ability to generate lymphoid,myeloid,and erythroid cells. Thus,the results revealed a temporal requirement for FADD. Although dispensable during lymphopoiesis post lineage commitment,FADD plays a critical role in early hematopoietic stages in the bone marrow.
View Publication
文献
Ma I and Allan AL (JUN 2011)
Stem cell reviews 7 2 292--306
The role of human aldehyde dehydrogenase in normal and cancer stem cells.
Normal stem cells and cancer stem cells (CSCs) share similar properties,in that both have the capacity to self-renew and differentiate into multiple cell types. In both the normal stem cell and cancer stem cell fields,there has been a great need for a universal marker that can effectively identify and isolate these rare populations of cells in order to characterize them and use this information for research and therapeutic purposes. Currently,it would appear that certain isoenzymes of the aldehyde dehydrogenase (ALDH) superfamily may be able to fulfill this role as a marker for both normal and cancer stem cells. ALDH has been identified as an important enzyme in the protection of normal hematopoietic stem cells,and is now also widely used as a marker to identify and isolate various types of normal stem cells and CSCs. In addition,emerging evidence suggests that ALDH1 is not only a marker for stem cells,but may also play important functional roles related to self-protection,differentiation,and expansion. This comprehensive review discusses the role that ALDH plays in normal stem cells and CSCs,with focus on ALDH1 and ALDH3A1. Discrepancies in the functional themes between cell types and future perspectives for therapeutic applications will also be discussed.
View Publication
文献
Fenouille N et al. (DEC 2010)
Cancer research 70 23 9659--70
Persistent activation of the Fyn/ERK kinase signaling axis mediates imatinib resistance in chronic myelogenous leukemia cells through upregulation of intracellular SPARC.
SPARC is an extracellular matrix protein that exerts pleiotropic effects on extracellular matrix organization,growth factor availability,cell adhesion,differentiation,and immunity in cancer. Chronic myelogenous leukemia (CML) cells resistant to the BCR-ABL inhibitor imatinib (IM-R cells) were found to overexpress SPARC mRNA. In this study,we show that imatinib triggers SPARC accumulation in a variety of tyrosine kinase inhibitor (TKI)-resistant CML cell lines. SPARC silencing in IM-R cells restored imatinib sensitivity,whereas enforced SPARC expression in imatinib-sensitive cells promoted viability as well as protection against imatinib-mediated apoptosis. Notably,we found that the protective effect of SPARC required intracellular retention inside cells. Accordingly,SPARC was not secreted into the culture medium of IM-R cells. Increased SPARC expression was intimately linked to persistent activation of the Fyn/ERK kinase signaling axis. Pharmacologic inhibition of this pathway or siRNA-mediated knockdown of Fyn kinase resensitized IM-R cells to imatinib. In support of our findings,increased levels of SPARC mRNA were documented in blood cells from CML patients after 1 year of imatinib therapy compared with initial diagnosis. Taken together,our results highlight an important role for the Fyn/ERK signaling pathway in imatinib-resistant cells that is driven by accumulation of intracellular SPARC.
View Publication
文献
Stumpf M et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 50 21541--6
Specific erythroid-lineage defect in mice conditionally deficient for Mediator subunit Med1.
The Mediator complex forms the bridge between transcriptional activators and the RNA polymerase II. Med1 (also known as PBP or TRAP220) is a key component of Mediator that interacts with nuclear hormone receptors and GATA transcription factors. Here,we show dynamic recruitment of GATA-1,TFIIB,Mediator,and RNA polymerase II to the β-globin locus in induced mouse erythroid leukemia cells and in an erythropoietin-inducible hematopoietic progenitor cell line. Using Med1 conditional knockout mice,we demonstrate a specific block in erythroid development but not in myeloid or lymphoid development,highlighted by the complete absence of β-globin gene expression. Thus,Mediator subunit Med1 plays a pivotal role in erythroid development and in β-globin gene activation.
View Publication
文献
Ohno Y et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 50 21529--34
Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential.
Retrovirus-mediated transduction of Hoxb4 enhances hematopoietic stem cell (HSC) activity and enforced expression of Hoxb4 induces in vitro development of HSCs from differentiating mouse embryonic stem cells,but the underlying molecular mechanism remains unclear. We previously showed that the HSC activity was abrogated by accumulated Geminin,an inhibitor for the DNA replication licensing factor Cdt1 in mice deficient in Rae28 (also known as Phc1),which encodes a member of Polycomb-group complex 1. In this study we found that Hoxb4 transduction reduced accumulated Geminin in Rae28-deficient mice,despite increasing the mRNA,and restored the impaired HSC activity. Supertransduction of Geminin suppressed the HSC activity induced by Hoxb4 transduction,whereas knockdown of Geminin promoted the clonogenic and replating activities,indicating the importance of Geminin regulation in the molecular mechanism underlying Hoxb4 transduction-mediated enhancement of the HSC activity. This facilitated our investigation of how transduced Hoxb4 reduced Geminin. We showed in vitro and in vivo that Hoxb4 and the Roc1 (also known as Rbx1)-Ddb1-Cul4a ubiquitin ligase core component formed a complex designated as RDCOXB4,which acted as an E3 ubiquitin ligase for Geminin and down-regulated Geminin through the ubiquitin-proteasome system. Down-regulated Geminin and the resultant E2F activation may provide cells with proliferation potential by increasing a DNA prereplicative complex loaded onto chromatin. Here we suggest that transduced Hoxb4 down-regulates Geminin protein probably by constituting the E3 ubiquitin ligase for Geminin to provide hematopoietic stem and progenitor cells with proliferation potential.
View Publication
文献
Takayama N et al. (DEC 2010)
The Journal of experimental medicine 207 13 2817--30
Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells.
Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells,but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors,we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation,reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a(+)CD42b(+) platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b(+) platelets were present in thrombi after laser-induced vessel wall injury. In contrast,sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression,decreased GATA1 expression,and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression,particularly its later decline,is key to producing functional platelets from selected iPSC clones.
View Publication